organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[1-(3-methyl­sulfanyl-1,2,4-triazin-5-yl)ethyl­­idene]di­azane

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bInstitute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 42, POB 58, Poland
*Correspondence e-mail: mojzych@ap.siedlce.pl

(Received 9 June 2009; accepted 29 June 2009; online 4 July 2009)

The mol­ecule of the title compound, C12H14N8S2, has an N—N gauche conformation. The triazine rings are nearly coplanar with respect to the imide bonds [C—C—C—N torsion angles = −15.3 (3) and −15.8 (3)°] and they are twisted by 77.88 (7)°. The overall conformation of the mol­ecule is stabilized by intra­molecular C—H⋯N hydrogen bonding. The mol­ecular packing is influenced by ππ inter­actions of the triazine systems with a shortest centroid–centroid separation of 3.5242 (12) Å.

Related literature

For the biological activity of hydrazones, see: Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For the synthesis, see: Karczmarzyk et al. (2000[Karczmarzyk, Z., Mojzych, M. & Rykowski, A. (2000). J. Chem. Crystallogr. 30, 423-427.]); Rykowski et al. (2000[Rykowski, A., Mojzych, M. & Karczmarzyk, Z. (2000). Heterocycles, 53, 2175-2181.]); Mojzych & Rykowski (2003[Mojzych, M. & Rykowski, A. (2003). Pol. J. Chem. 77, 1797-1804.]). For related structures, see: Lewis et al. (2000[Lewis, M., Barnes, C. L. & Glaser, R. (2000). Acta Cryst. C56, 393-396.]); Sauro & Workentin (2001[Sauro, V. A. & Workentin, M. S. (2001). J. Org. Chem. 66, 831-838.]); Tai et al. (2008[Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N8S2

  • Mr = 334.43

  • Monoclinic, P 21 /c

  • a = 14.4962 (4) Å

  • b = 7.0814 (2) Å

  • c = 15.6619 (5) Å

  • β = 107.465 (2)°

  • V = 1533.63 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.24 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.474, Tmax = 0.753

  • 5750 measured reflections

  • 2635 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.03

  • 2635 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H193⋯N4 0.96 2.48 2.875 (3) 104
C20—H202⋯N8 0.96 2.46 2.816 (3) 101

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been found to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003; Bedia et al., 2006). Recently, we reported several aryl hydrazones of 5-acyl-1,2,4-triazine as important building blocks for the synthesis of N-1 substituted pyrazolo[4,3-e][1,2,4]triazines (Karczmarzyk et al., 2000; Rykowski et al., 2000). In continuation of work in this area we report herein the crystal structure of the title compound as intermediate for the construction of N-1 unsubstituted pyrazolo[4,3-e][1,2,4]triazines (Mojzych & Rykowski, 2003) and as a ligand for the synthesis of novel organometallic compounds with expected biological activity and other material applications (Sauro & Workentin, 2001).

In the title molecule, the C—N imide bonds of 1.283 (3) and 1.279 (3) Å and N—N hydrazine bond of 1.370 (2) Å are very similar to those reported for other related structures (Lewis et al., 2000; Tai et al., 2008). The molecule of (I) has an N—N gauche conformation with C7—N8—N9—C10 torsion angle of 114.8 (2)°. The triazine rings are nearly coplanar with the respective imide bonds [C6—C5—C7—N8 = -15.3 (3)° and C16—-C15—C10—N9 = -15.8 (3)°] and they are twisted by 77.88 (7)° with respect to each other. This conformation is stabilized by the intramolecular C19—H193···N4 and C20—H202···N8 hydrogen bonds (Table 1). The methylsulfanyl groups are in different conformations in respect to the mother triazine rings with the torsion angles N4—C3—S17—C18 and N14—C13—S21—C22 of 179.03 (15) and 7.0 (2)°, respectively. Significant π-π interactions are observed in the packing (Spek, 2009). The triazine N1···C6 rings form molecular stacks in the [010] direction with centroid-to-centroid separations of 3.5242 (12) (1 - x, -y, 1 - z) and 3.6473 (12) Å (1 - x, 1 - y, 1 - z) (Fig. 2) and slippages of 0.898 and 1.615 Å, respectively.

Related literature top

For the biological activity of hydrazones, see: Rollas et al. (2002); Terzioglu & Gürsoy (2003); Bedia et al. (2006). For the synthesis, see: Karczmarzyk et al. (2000); Rykowski et al. (2000); Mojzych & Rykowski (2003). For related structures, see: Lewis et al. (2000); Sauro & Workentin (2001); Tai et al. (2008).

Experimental top

The synthesis of compound (I) and its analytical data (IR, 1H NMR) were described by Mojzych & Rykowski (2003). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution.

Refinement top

All H atoms were located in a difference Fourier map and treated as riding on their C atoms [C—H distances of 0.93 Å (aromatic) and 0.96 Å (CH3)] with Uiso(H) = 1.5Ueq(C). The completeness of the reflection count on 0.94 level instead of expected 1.0 is caused by the poor diffraction due to unfavourable shape of the crystals of (I) (thin yellow plates).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and the 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of part of the crystal structure of (I) along (a) [100] and (b) [010], showing the formation of a column of stacked triazine rings.
1,2-Bis[1-(3-methylsulfanyl-1,2,4-triazin-5-yl)ethylidene]diazane top
Crystal data top
C12H14N8S2F(000) = 696
Mr = 334.43Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1791 reflections
a = 14.4962 (4) Åθ = 5.8–66.9°
b = 7.0814 (2) ŵ = 3.24 mm1
c = 15.6619 (5) ÅT = 293 K
β = 107.465 (2)°Plate, yellow
V = 1533.63 (8) Å30.32 × 0.22 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2635 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 67.7°, θmin = 5.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.474, Tmax = 0.753k = 82
5750 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.4463P]
where P = (Fo2 + 2Fc2)/3
2635 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N8S2V = 1533.63 (8) Å3
Mr = 334.43Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.4962 (4) ŵ = 3.24 mm1
b = 7.0814 (2) ÅT = 293 K
c = 15.6619 (5) Å0.32 × 0.22 × 0.08 mm
β = 107.465 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2200 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.753Rint = 0.035
5750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2635 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S170.29719 (4)0.25053 (8)0.43807 (4)0.0484 (2)
S210.94963 (5)0.20147 (9)0.04349 (4)0.0524 (2)
N10.56957 (14)0.2978 (3)0.57615 (13)0.0434 (4)
N20.47200 (14)0.3040 (3)0.55353 (12)0.0416 (4)
N40.46056 (13)0.1897 (2)0.40671 (11)0.0369 (4)
N80.69264 (14)0.1583 (3)0.38213 (12)0.0430 (4)
N90.74256 (14)0.0796 (3)0.32936 (13)0.0437 (5)
N110.92948 (16)0.1765 (3)0.21425 (15)0.0530 (5)
N120.95071 (15)0.0836 (3)0.14810 (14)0.0513 (5)
N140.86038 (13)0.1842 (2)0.17013 (12)0.0391 (4)
C30.42339 (16)0.2505 (3)0.47130 (15)0.0365 (5)
C50.55527 (16)0.1885 (3)0.42894 (14)0.0346 (5)
C60.61047 (17)0.2431 (3)0.51602 (15)0.0384 (5)
H610.67760.24030.53120.058*
C70.60199 (16)0.1214 (3)0.36205 (14)0.0373 (5)
C100.77872 (16)0.1880 (3)0.28245 (14)0.0399 (5)
C130.91659 (16)0.0920 (3)0.13019 (15)0.0410 (5)
C150.83999 (15)0.0913 (3)0.23536 (14)0.0374 (5)
C160.87630 (17)0.0913 (3)0.25750 (16)0.0476 (6)
H1610.86240.15440.30420.071*
C180.27045 (19)0.3325 (3)0.53668 (18)0.0524 (6)
H1810.29210.24080.58360.079*
H1820.20190.35040.52350.079*
H1830.30300.45020.55570.079*
C190.54418 (18)0.0180 (3)0.28090 (15)0.0470 (6)
H1910.58000.08970.27120.071*
H1920.53090.10020.22990.071*
H1930.48440.02320.28920.071*
C200.7638 (2)0.3954 (3)0.27192 (19)0.0583 (7)
H2010.82220.45410.26810.087*
H2020.74760.44510.32260.087*
H2030.71220.42110.21830.087*
C220.9029 (2)0.4349 (4)0.04713 (18)0.0561 (6)
H2210.83440.42840.03770.084*
H2220.91560.51090.00110.084*
H2230.93370.49040.10450.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S170.0406 (3)0.0580 (4)0.0483 (4)0.0010 (3)0.0158 (3)0.0040 (3)
S210.0571 (4)0.0614 (4)0.0505 (4)0.0013 (3)0.0341 (3)0.0052 (3)
N10.0458 (11)0.0510 (10)0.0343 (10)0.0001 (9)0.0135 (8)0.0036 (8)
N20.0461 (11)0.0460 (10)0.0351 (10)0.0023 (8)0.0157 (8)0.0016 (8)
N40.0431 (10)0.0387 (9)0.0315 (9)0.0004 (8)0.0151 (8)0.0010 (7)
N80.0475 (11)0.0490 (10)0.0386 (10)0.0007 (9)0.0224 (9)0.0009 (8)
N90.0470 (11)0.0506 (10)0.0401 (10)0.0022 (9)0.0232 (9)0.0007 (8)
N110.0533 (12)0.0532 (11)0.0548 (12)0.0129 (10)0.0196 (10)0.0027 (10)
N120.0525 (12)0.0544 (11)0.0522 (12)0.0094 (9)0.0237 (10)0.0023 (9)
N140.0382 (10)0.0453 (10)0.0372 (10)0.0016 (8)0.0165 (8)0.0044 (8)
C30.0428 (12)0.0319 (10)0.0381 (12)0.0010 (9)0.0172 (10)0.0033 (8)
C50.0435 (12)0.0299 (9)0.0340 (11)0.0010 (9)0.0169 (9)0.0039 (8)
C60.0389 (12)0.0422 (11)0.0357 (11)0.0008 (9)0.0139 (9)0.0008 (9)
C70.0493 (13)0.0349 (10)0.0320 (11)0.0016 (9)0.0188 (9)0.0052 (8)
C100.0391 (12)0.0493 (12)0.0337 (11)0.0012 (9)0.0143 (9)0.0020 (9)
C130.0375 (12)0.0494 (12)0.0392 (12)0.0022 (10)0.0161 (9)0.0091 (9)
C150.0343 (11)0.0458 (11)0.0323 (11)0.0018 (9)0.0105 (9)0.0030 (9)
C160.0470 (14)0.0528 (13)0.0440 (13)0.0081 (10)0.0154 (11)0.0057 (10)
C180.0534 (15)0.0535 (13)0.0598 (16)0.0080 (11)0.0313 (13)0.0023 (12)
C190.0565 (15)0.0510 (13)0.0373 (12)0.0026 (11)0.0198 (11)0.0064 (10)
C200.0782 (19)0.0466 (13)0.0662 (17)0.0049 (13)0.0459 (15)0.0011 (12)
C220.0527 (15)0.0635 (15)0.0593 (16)0.0019 (12)0.0280 (13)0.0089 (12)
Geometric parameters (Å, º) top
S17—C31.745 (2)C6—H610.9300
S17—C181.798 (2)C7—C191.488 (3)
S21—C131.751 (2)C10—C151.481 (3)
S21—C221.794 (3)C10—C201.487 (3)
N1—C61.313 (3)C15—C161.400 (3)
N1—N21.352 (3)C16—H1610.9300
N2—C31.324 (3)C18—H1810.9600
N4—C51.311 (3)C18—H1820.9600
N4—C31.352 (3)C18—H1830.9600
N8—C71.283 (3)C19—H1910.9600
N8—N91.370 (2)C19—H1920.9600
N9—C101.279 (3)C19—H1930.9600
N11—C161.315 (3)C20—H2010.9600
N11—N121.339 (3)C20—H2020.9600
N12—C131.337 (3)C20—H2030.9600
N14—C151.321 (3)C22—H2210.9600
N14—C131.337 (3)C22—H2220.9600
C5—C61.412 (3)C22—H2230.9600
C5—C71.486 (3)
C3—S17—C18102.76 (12)N14—C15—C10117.49 (19)
C13—S21—C22100.93 (11)C16—C15—C10122.7 (2)
C6—N1—N2118.93 (19)N11—C16—C15122.1 (2)
C3—N2—N1117.08 (18)N11—C16—H161119.0
C5—N4—C3115.11 (18)C15—C16—H161119.0
C7—N8—N9117.19 (19)S17—C18—H181109.5
C10—N9—N8118.97 (18)S17—C18—H182109.5
C16—N11—N12118.7 (2)H181—C18—H182109.5
C13—N12—N11117.58 (19)S17—C18—H183109.5
C15—N14—C13115.32 (19)H181—C18—H183109.5
N2—C3—N4127.1 (2)H182—C18—H183109.5
N2—C3—S17119.62 (17)C7—C19—H191109.5
N4—C3—S17113.23 (17)C7—C19—H192109.5
N4—C5—C6119.94 (19)H191—C19—H192109.5
N4—C5—C7118.52 (19)C7—C19—H193109.5
C6—C5—C7121.5 (2)H191—C19—H193109.5
N1—C6—C5121.8 (2)H192—C19—H193109.5
N1—C6—H61119.1C10—C20—H201109.5
C5—C6—H61119.1C10—C20—H202109.5
N8—C7—C19125.6 (2)H201—C20—H202109.5
N8—C7—C5114.34 (19)C10—C20—H203109.5
C19—C7—C5120.0 (2)H201—C20—H203109.5
N9—C10—C15114.78 (19)H202—C20—H203109.5
N9—C10—C20125.9 (2)S21—C22—H221109.5
C15—C10—C20119.33 (19)S21—C22—H222109.5
N12—C13—N14126.5 (2)H221—C22—H222109.5
N12—C13—S21113.86 (16)S21—C22—H223109.5
N14—C13—S21119.58 (17)H221—C22—H223109.5
N14—C15—C16119.80 (19)H222—C22—H223109.5
C6—N1—N2—C31.1 (3)C6—C5—C7—C19163.73 (19)
C7—N8—N9—C10114.8 (2)N8—N9—C10—C15173.76 (19)
C16—N11—N12—C130.3 (3)N8—N9—C10—C206.5 (4)
N1—N2—C3—N40.1 (3)N11—N12—C13—N142.1 (4)
N1—N2—C3—S17178.80 (15)N11—N12—C13—S21179.33 (17)
C5—N4—C3—N21.6 (3)C15—N14—C13—N122.1 (3)
C5—N4—C3—S17179.68 (14)C15—N14—C13—S21179.36 (16)
C18—S17—C3—N20.15 (19)C22—S21—C13—N12174.30 (19)
C18—S17—C3—N4179.03 (15)C22—S21—C13—N147.0 (2)
C3—N4—C5—C61.8 (3)C13—N14—C15—C160.5 (3)
C3—N4—C5—C7179.32 (16)C13—N14—C15—C10179.41 (19)
N2—N1—C6—C50.8 (3)N9—C10—C15—N14164.3 (2)
N4—C5—C6—N10.7 (3)C20—C10—C15—N1415.4 (3)
C7—C5—C6—N1178.20 (18)N9—C10—C15—C1615.8 (3)
N9—N8—C7—C197.1 (3)C20—C10—C15—C16164.4 (2)
N9—N8—C7—C5171.86 (17)N12—N11—C16—C151.2 (4)
N4—C5—C7—N8167.24 (18)N14—C15—C16—N111.1 (4)
C6—C5—C7—N815.3 (3)C10—C15—C16—N11179.0 (2)
N4—C5—C7—C1913.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H193···N40.962.482.875 (3)104
C20—H202···N80.962.462.816 (3)101

Experimental details

Crystal data
Chemical formulaC12H14N8S2
Mr334.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.4962 (4), 7.0814 (2), 15.6619 (5)
β (°) 107.465 (2)
V3)1533.63 (8)
Z4
Radiation typeCu Kα
µ (mm1)3.24
Crystal size (mm)0.32 × 0.22 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.474, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
5750, 2635, 2200
Rint0.035
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.03
No. of reflections2635
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H193···N40.962.482.875 (3)104
C20—H202···N80.962.462.816 (3)101
 

References

First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKarczmarzyk, Z., Mojzych, M. & Rykowski, A. (2000). J. Chem. Crystallogr. 30, 423–427.  Web of Science CSD CrossRef CAS Google Scholar
First citationLewis, M., Barnes, C. L. & Glaser, R. (2000). Acta Cryst. C56, 393–396.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMojzych, M. & Rykowski, A. (2003). Pol. J. Chem. 77, 1797–1804.  CAS Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRykowski, A., Mojzych, M. & Karczmarzyk, Z. (2000). Heterocycles, 53, 2175–2181.  CrossRef CAS Google Scholar
First citationSauro, V. A. & Workentin, M. S. (2001). J. Org. Chem. 66, 831–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds