organic compounds
(E)-2-(2-Nitroprop-1-enyl)furan
aDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain, bCentro de Bioactivos Químicos, Universidad Central Marta Abreu de Las, Villas, Cuba, and cDepartamento de Química Analítica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es
Crystals of the title compound, C7H7NO3, under Mo Kα radiation sublime in less than 1h at room temperature. However, it was possible to collect data at 100K. It crystallized as the E isomer only. A double-bond conjugation in the furan ring is extended to the nitroalkenyl group. Molecular associations were realized in the crystal through N⋯π [3.545 (2) Å] interactions involving the furan ring and C—H⋯O hydrogen bonds.
Related literature
For general background to (nitro-alkenyl)-furan compounds, see: Yan et al. (2008); Ono N. (2006); Vallejos et al. (2005); Negrín et al. (2003); Negrín et al. (2002), Estrada et al. (1999); Agafonov et al. (1991); Gruntfest et al. (1972). For related structures, see: Valerga et al. (2009); Martínez-Bescos et al. (2008); Novoa-de-Armas et al. (1997); Pomés et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809030141/kp2230sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030141/kp2230Isup2.hkl
2-(2-Nitro-propen-1-yl)-furan, also called UC-244, was obtained using the Knoevenagel's condensation method by reaction of furfural, an aromatic compound from acid hydrolysis of sugar cane residuals (straw, sawdust, etc.) and nitroethane in the presence of isobutylamine as a catalyst. To obtain a product with purity higher than 99% the method was optimized studying temperature, contact and reaction times as variables. The purification was achieved using activated coal and ethanol. The yellow crystals should be protected from the light and heating. 1H NMR (CDCl3) δ (ppm): 2.511 (3H, s, -CH3), 6.533 (1H, dd, 2J = 3.6 Hz and 2J = 1.6 Hz, -O-CH=CH-CH=), 6.781 (1H, d, 2J = 3.6Hz, -O-CH=CH-CH=), 7.599 (1H, d, 2J = 1.6 Hz, -O-CH=CH-CH=), 7.775 (1H, s, HC=CMe) 13C{1H} NMR (CDCl3) δ (ppm): 13.656 (-C H3), 112.688 (-O-CH=CH-CH=), 119.100 (-O-CH=CH-CH=), 120.346 (-C=C(Me)NO2), 144.097 (-C=C(Me)NO2), 146.104 (-O-CH=CH-CH=), 147.679 (Cring-CH-C=C(Me)NO2).
All H atoms were positioned geometrically and treated as riding (C—H = 0.99Å for methylene and C—H = 0.93Å otherwise). Uiso(H) = 1.2 Ueq(C) of the
In the absence of any significant anomalous scatters, the Friedel pairs were merged before final refinements.Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP representation of I with the atom labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. Packing diagram of E-2-(2-nitro-propen-1-yl)-furan. |
C7H7NO3 | F(000) = 320 |
Mr = 153.14 | Dx = 1.442 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2619 reflections |
a = 7.1061 (14) Å | θ = 2.9–27.6° |
b = 9.4394 (19) Å | µ = 0.12 mm−1 |
c = 10.743 (2) Å | T = 100 K |
β = 101.86 (3)° | Irregular, yellow |
V = 705.2 (3) Å3 | 0.45 × 0.30 × 0.18 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 1620 independent reflections |
Radiation source: fine-focus sealed tube | 1497 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
1700 ω scan frames, 0.3°, 10s | θmax = 27.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→8 |
Tmin = 0.898, Tmax = 1.000 | k = −12→12 |
5648 measured reflections | l = −13→13 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.069P)2 + 0.2975P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.130 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.29 e Å−3 |
1620 reflections | Δρmin = −0.34 e Å−3 |
102 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.012 (3) |
C7H7NO3 | V = 705.2 (3) Å3 |
Mr = 153.14 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1061 (14) Å | µ = 0.12 mm−1 |
b = 9.4394 (19) Å | T = 100 K |
c = 10.743 (2) Å | 0.45 × 0.30 × 0.18 mm |
β = 101.86 (3)° |
Bruker SMART APEX diffractometer | 1620 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1497 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 1.000 | Rint = 0.032 |
5648 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.29 e Å−3 |
1620 reflections | Δρmin = −0.34 e Å−3 |
102 parameters |
Experimental. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08533 (15) | 0.64923 (11) | 0.35499 (10) | 0.0257 (3) | |
O2 | 0.22698 (17) | 0.12565 (12) | 0.41245 (11) | 0.0328 (3) | |
O3 | −0.00888 (16) | 0.10699 (11) | 0.25033 (11) | 0.0311 (3) | |
N1 | 0.09873 (17) | 0.17838 (13) | 0.33088 (11) | 0.0227 (3) | |
C1 | 0.19682 (19) | 0.55649 (15) | 0.43728 (13) | 0.0200 (3) | |
C2 | 0.31539 (19) | 0.62992 (15) | 0.53073 (13) | 0.0211 (3) | |
H2 | 0.4068 | 0.5911 | 0.5993 | 0.025* | |
C3 | 0.2760 (2) | 0.77609 (16) | 0.50590 (15) | 0.0272 (4) | |
H3 | 0.3360 | 0.8539 | 0.5545 | 0.033* | |
C4 | 0.1374 (2) | 0.78256 (15) | 0.40026 (16) | 0.0278 (4) | |
H4 | 0.0828 | 0.8679 | 0.3620 | 0.033* | |
C5 | 0.18569 (19) | 0.40627 (15) | 0.41909 (12) | 0.0194 (3) | |
H5 | 0.2709 | 0.3514 | 0.4802 | 0.023* | |
C6 | 0.07004 (19) | 0.33308 (14) | 0.32658 (12) | 0.0197 (3) | |
C7 | −0.0833 (2) | 0.38425 (16) | 0.22071 (14) | 0.0266 (3) | |
H7A | −0.1245 | 0.4791 | 0.2409 | 0.040* | |
H7B | −0.1932 | 0.3193 | 0.2092 | 0.040* | |
H7C | −0.0336 | 0.3881 | 0.1422 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0287 (6) | 0.0186 (5) | 0.0277 (5) | 0.0010 (4) | 0.0008 (4) | 0.0023 (4) |
O2 | 0.0399 (7) | 0.0183 (5) | 0.0339 (6) | 0.0058 (5) | −0.0073 (5) | 0.0003 (4) |
O3 | 0.0372 (7) | 0.0217 (6) | 0.0304 (6) | −0.0050 (4) | −0.0023 (5) | −0.0073 (4) |
N1 | 0.0263 (6) | 0.0186 (6) | 0.0223 (6) | −0.0007 (5) | 0.0028 (5) | −0.0024 (5) |
C1 | 0.0210 (7) | 0.0172 (7) | 0.0222 (7) | 0.0015 (5) | 0.0051 (5) | 0.0019 (5) |
C2 | 0.0197 (7) | 0.0216 (7) | 0.0217 (7) | −0.0002 (5) | 0.0038 (5) | −0.0009 (5) |
C3 | 0.0296 (8) | 0.0210 (7) | 0.0324 (8) | −0.0057 (6) | 0.0100 (6) | −0.0069 (6) |
C4 | 0.0321 (8) | 0.0145 (7) | 0.0383 (8) | 0.0012 (6) | 0.0105 (6) | 0.0031 (6) |
C5 | 0.0199 (7) | 0.0173 (7) | 0.0206 (6) | 0.0013 (5) | 0.0034 (5) | 0.0010 (5) |
C6 | 0.0217 (7) | 0.0164 (6) | 0.0211 (7) | 0.0014 (5) | 0.0047 (5) | 0.0005 (5) |
C7 | 0.0292 (8) | 0.0254 (7) | 0.0224 (7) | 0.0037 (6) | −0.0014 (6) | −0.0020 (6) |
O1—C4 | 1.3724 (18) | C3—C4 | 1.342 (2) |
O1—C1 | 1.3739 (17) | C3—H3 | 0.9500 |
O2—N1 | 1.2320 (16) | C4—H4 | 0.9500 |
O3—N1 | 1.2311 (16) | C5—C6 | 1.3434 (19) |
N1—C6 | 1.4739 (18) | C5—H5 | 0.9500 |
C1—C2 | 1.3602 (19) | C6—C7 | 1.4850 (19) |
C1—C5 | 1.431 (2) | C7—H7A | 0.9800 |
C2—C3 | 1.422 (2) | C7—H7B | 0.9800 |
C2—H2 | 0.9500 | C7—H7C | 0.9800 |
C4—O1—C1 | 106.17 (12) | C3—C4—H4 | 124.6 |
O3—N1—O2 | 122.73 (12) | O1—C4—H4 | 124.6 |
O3—N1—C6 | 117.28 (11) | C6—C5—C1 | 128.22 (13) |
O2—N1—C6 | 119.99 (11) | C6—C5—H5 | 115.9 |
C2—C1—O1 | 109.76 (13) | C1—C5—H5 | 115.9 |
C2—C1—C5 | 127.88 (13) | C5—C6—N1 | 115.26 (12) |
O1—C1—C5 | 122.34 (12) | C5—C6—C7 | 129.82 (13) |
C1—C2—C3 | 106.73 (13) | N1—C6—C7 | 114.92 (12) |
C1—C2—H2 | 126.6 | C6—C7—H7A | 109.5 |
C3—C2—H2 | 126.6 | C6—C7—H7B | 109.5 |
C4—C3—C2 | 106.53 (13) | H7A—C7—H7B | 109.5 |
C4—C3—H3 | 126.7 | C6—C7—H7C | 109.5 |
C2—C3—H3 | 126.7 | H7A—C7—H7C | 109.5 |
C3—C4—O1 | 110.81 (13) | H7B—C7—H7C | 109.5 |
C4—O1—C1—C2 | −0.25 (15) | O1—C1—C5—C6 | −1.4 (2) |
C4—O1—C1—C5 | −178.62 (12) | C1—C5—C6—N1 | 177.53 (12) |
O1—C1—C2—C3 | 0.10 (15) | C1—C5—C6—C7 | −2.8 (2) |
C5—C1—C2—C3 | 178.36 (13) | O3—N1—C6—C5 | 177.57 (12) |
C1—C2—C3—C4 | 0.08 (16) | O2—N1—C6—C5 | −2.79 (19) |
C2—C3—C4—O1 | −0.24 (17) | O3—N1—C6—C7 | −2.15 (18) |
C1—O1—C4—C3 | 0.31 (16) | O2—N1—C6—C7 | 177.49 (12) |
C2—C1—C5—C6 | −179.46 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.95 | 2.47 | 3.3037 (19) | 147 |
C5—H5···O3i | 0.95 | 3.03 | 3.770 (2) | 136 |
C4—H4···O2ii | 0.95 | 2.65 | 3.2980 (19) | 126 |
C4—H4···O3ii | 0.95 | 2.58 | 3.516 (2) | 170 |
C7—H7C···O2iii | 0.98 | 2.70 | 3.310 (2) | 121 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H7NO3 |
Mr | 153.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.1061 (14), 9.4394 (19), 10.743 (2) |
β (°) | 101.86 (3) |
V (Å3) | 705.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.45 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.898, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5648, 1620, 1497 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.130, 1.07 |
No. of reflections | 1620 |
No. of parameters | 102 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.34 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.95 | 2.47 | 3.3037 (19) | 146.9 |
C5—H5···O3i | 0.95 | 3.03 | 3.770 (2) | 136.2 |
C4—H4···O2ii | 0.95 | 2.65 | 3.2980 (19) | 125.7 |
C4—H4···O3ii | 0.95 | 2.58 | 3.516 (2) | 170.3 |
C7—H7C···O2iii | 0.98 | 2.70 | 3.310 (2) | 120.9 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
We thank the SCCYT (Universidad de Cádiz) for theX-ray data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía, for financial support. ZRN thanks the AUIP and Aula Iberoamericana for the stay at UCA.
References
Agafonov, N. E., Sedishev, I. P., Dudin, A. V., Kutin, A. A., Stashina, G. A. & Zhulin, V. M. (1991). Izv. Akad. Nauk SSSR Ser. Khim. 2, 426-433. Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Estrada, E., Gomez, M., Castañedo, N. & Perez, C. (1999). J. Mol. Struct. THEOCHEM, 468, 193–200. [Amended journal title OK?]. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gruntfest, M. G., Potemkin, G. F., Kolodyazhnyi, Y. V., Zverev, V. V., Nazarova, Z. N. & Osipov, O. A. (1972). Zh. Org. Khim. 8, 404–411. CAS Google Scholar
Martínez-Bescos, P., Cagide-Fagin, F., Roa, L. F., Ortiz-Lara, J. C., Kierus, K., Ozores-Viturro, L., Fernández-González, M. & Alonso, R. (2008). J. Org. Chem. 73, 3745–3753. Web of Science PubMed Google Scholar
Negrín, Z. R., Martínez, B. N. H., Meseguer, G. P., Placeres, E. G. & Molina, M. I. D. (2003). Cent. Azúcar, 30, 30–34. Google Scholar
Negrín, Z. R., Placeres, E. G., Martínez, B. N. H., Meseguer, G. P. & Montenegro, O. N. (2002). Cent. Azúcar, 29, 79–86. Google Scholar
Novoa-de-Armas, H., Pomes-Hernández, R., Duque-Rodríguez, J. & Toscano, R. A. (1997). Z. Kristallogr. 212, 63–63. CAS Google Scholar
Ono, N. (2006). Sci. Synth. 33, 337–370. CAS Google Scholar
Pomés, R., Duque, J., Novoa, H., Castañedo, N. & Toscano, A. (1995). Acta Cryst. C51, 1368–1369. CSD CrossRef Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valerga, P., Puerta, M. C., Rodríguez Negrín, Z., Castañedo Cancio, N. & Palma Lovillo, M. (2009). Acta Cryst. E65, o1979. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vallejos, G., Fierro, A., Rezende, M. C., Sepúlveda-Bozab, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 14, 4450–4457. Web of Science CrossRef Google Scholar
Yan, S., Gao, Y., Xing, R., Shen, Y., Liu, Y., Wu, P. & Wu, H. (2008). Tetrahedron Lett. 64, 6294–6299. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some (nitro-alkenyl)-furan compounds show antibacterial and antifungal activities and were described and patented as drugs ingredients for veterinarian and agricultural purposes. We recently started the structural study of this group of furylnitroolefins. The title compound crystallized exclusively in its E configuration (Fig. 1). The conjugated system of double bonds in furan ring is extended to the alkenyl group being C2—C3 and C1—C5 bond lenghts 1.422 (2) and 1.431 (2) Å, significatively shorter than single C—C bonds. Distances N1—O2 = 1.232 (2) and N1—O3= 1.231 (2) indicate conjugation with a delocalized double bond. Alkenyl C5 and C6 sp2 carbons are coplanar with the furan ring as shown by an angle of 3.9 (1)° between ring plane and C5 C6 C7 N1 plane. Crystal packing shows N···π interactions involving the furan ring: N···Cg (1/2-x, -1/2+y,1/2-z) distance is 3.545 (2) Å (Fig. 2) and CH···O hydrogen bonds (Table 1).