metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m953-m954

Nonapiperidinium mono­hydrogen deca­vanadate tetra­nitrate

aLaboratoire de Matériaux et de Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis–El Manar, 2092 El Manar II Tunis, Tunisia
*Correspondence e-mail: mohseng2002@yahoo.fr

(Received 17 May 2009; accepted 7 July 2009; online 18 July 2009)

The title compound, (C5H12N)9[HV10O28](NO3)4, contains a monoprotonated deca­vanadate polyanion which lies on an inversion center. All the piperidinium cations adopt chair conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds form chains along [001]. As well as half of a polyanion, the asymmetric unit contains one full and two half-occupancy nitrate ions and four full occupancy and one half-occupancy piperidinium cations; the half-occupancy piperidinium cation is disordered over two general sites with occupancies of 0.32 and 0.18, and is, in turn, disordered over an inversion center.

Related literature

For the biological activity of vanadium, see: Crans (1994[Crans, D. (1994). Comments Inorg. Chem. 16, 1-33.]); Elvingson et al. (1996[Elvingson, K., GonzálezBaró, A. & Pettersson, L. (1996). Inorg. Chem. 35, 3388-3393.]). For its inter­actions with nitro­gen compounds such as proteins and amino acids and its role in enzymatic reactions, see: Correia et al. (2004[Correia, I., Avecilla, F., Marcao, S. & Pessoa, J. C. (2004). Inorg. Chim. Acta, 357, 4476-4487.]). For related structures, see: Ferreira da Silva et al. (2003[Ferreira da Silva, J. L., Piedade, M. F. M. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222-242.]); Maciejewska et al. (2003[Maciejewska, G., Nosek, M., Glowiak, T., Starosta, J. & Cieslak-Golonka, M. (2003). Polyhedron, 22, 1415-1424.]); Arrieta (1992[Arrieta, J. M. (1992). Polyhedron, 11, 3045-3068.]); Wang et al. (2008[Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.]); Wery et al. (1996[Wery, A. S. J., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. (1996). Polyhedron, 15, 4555-4564.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H12N)9[HV10O28](NO3)4

  • Mr = 1981.85

  • Triclinic, [P \overline 1]

  • a = 11.593 (2) Å

  • b = 13.290 (2) Å

  • c = 14.676 (2) Å

  • α = 105.858 (2)°

  • β = 110.335 (2)°

  • γ = 92.457 (2)°

  • V = 2015.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.14 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.72, Tmax = 0.90 (expected range = 0.676–0.846)

  • 9193 measured reflections

  • 8755 independent reflections

  • 6099 reflections with I > 2σ(I)

  • Rint = 0.047

  • 2 standard reflections frequency: 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.04

  • 8755 reflections

  • 598 parameters

  • 262 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
NC1—HC1A⋯O8 0.90 1.80 2.693 (3) 174
NC1—HC1B⋯ON6Ai 0.90 1.95 2.829 (8) 164
NC1—HC1B⋯ON6B 0.90 2.05 2.876 (9) 153
NC1—HC1B⋯ON5Ai 0.90 2.48 3.214 (12) 139
NC1—HC1B⋯ON5B 0.90 2.54 3.355 (13) 151
NC2—HC2A⋯ON4A 0.90 1.95 2.824 (7) 164
NC2—HC2A⋯ON4Bi 0.90 2.05 2.909 (8) 159
NC2—HC2A⋯ON5Bi 0.90 2.50 3.280 (13) 145
NC2—HC2A⋯ON5A 0.90 2.56 3.251 (12) 134
NC2—HC2B⋯O4 0.90 1.85 2.746 (3) 174
NC3—HC3A⋯O5ii 0.90 1.85 2.749 (4) 175
NC3—HC3B⋯ON3 0.90 2.06 2.885 (5) 152
NC3—HC3B⋯ON2 0.90 2.31 3.095 (5) 145
NC4—HC4A⋯O7 0.90 1.82 2.716 (4) 172
NC4—HC4B⋯ON3 0.90 2.16 2.954 (6) 147
NC4—HC4B⋯ON1 0.90 2.26 3.060 (6) 148
NC5—HC5A⋯O6 0.90 2.40 3.248 (17) 158
NC6—HC6A⋯ON4B 0.90 2.12 2.92 (2) 147
NC6—HC6B⋯O6i 0.90 1.92 2.80 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Vanadium is a rare metal with exceptional properties. Both its cationic and anionic forms can interact with biomolecules, and its coordination chemistry plays a predominant role in these interactions. Among several biological functions of vanadium, many important therapeutic effects have been described, including hormonal, cardiovascular, anticarcinogenic, sugar lowering activities (Elvingson et al., 1996; Crans, 1994). Because of the physiological relevance of vanadium, a better understanding of its complexation behavior with organic ligands is of vital interest. The interactions of this metal with nitrogen compounds like proteins and amino acids and its role in enzymatic reactions have been studied extensively (Correia et al., 2004). Herein we present the crystal structure of the title compound (I).

The asymmetric unit of (I) contains one half of a monoprotonated decavanadate polyanion [HV10O28]5-, 4.5 piperidinum cations (C5H12N+), and 2 NO3-anions. The formula unit is generated by a crystallographic inversion centre. The [HV10O28]5- polyanion is composed of ten distorted VO6 edge-sharing octahedra and is best described as cubic close-packing of oxygen ions, with the octahedral holes filled by vanadium ions. Each VO6 octahedron is considerably distorted, with bond angles at the V atoms ranging from 1.602 (2) to 2.345 (2) Å. The V—O distance depends upon the type of oxo ligands: V=Ot bond lengths to the terminal oxo O atoms vary from 1.603 (3) to 1.608 (2) Å, V—O2b bond lengths to the O atoms bridging two V atoms vary from 1.693 (3) to 2.059 (3) Å, V—O3b bond lengths to the O atoms bridging three V atoms vary from 1.914 (2) to 2.067 (3) Å and V—O6b bond lengths to the O atoms shared between six V atoms range 2.081 (3) to 2.345 (3) Å. The V—V distances are in the range 3.091 (4) to 3.286 (4) Å. The V—O bond and angles of the [HV10O28]6- are in agreement with those reported in literature (Ferreira da Silva et al., 2003; Maciejewska et al., 2003; Arrieta, 1992).

The organic groups are present as cations, C5H12N+. These piperidinium rings adopt chair conformation (Fig. 2). The bond lengths of C–N and C–C are in the range of 1.468 (6) – 1.502 (7) Å and 1.469 (8) – 1.543 (7) Å, respectively. The C–C–C, C—C—N and C—N—C angles are in the range of 106 (1) – 113 (1) Å, 107 (2) – 111.7 (4) Å and 112.1 (4) – 114.1 (1) Å, respectively. These values are in agreement with those reported in literature (Wang et al., 2008). As a result, we found one of the piperidinium cations in special position; this cation is disordred with a ca 16:9 occupancy ratio for its (NC5, C5H12N+) and (NC6, C5H12N+) components.

Similarly, we identified one disordered nitrate group, with a similar occupancy ratio for components N2O3A and N2O3B. The central N atom of N1O3, N2O3A and of N2O3B nitrate groups is close to coplanarity with the three attached O atoms. The largest deviation from the plane being 0.0004 Å, 0.0062 and 0.0064 respectively. The N–O bond distances and O–N–O angles are in agreement with in the nitrate unit.

The most important feature of this crystal is the presence of N–H···O, hydrogen bonds with D···A distances ranging from 2.693 (3) to 3.355 (13) Å. These interactions connect the various fragments into a supramolecular structure. In fact, it is noted that piperidinium C5H12N+ cations are located around the [HV10O28] (Fig. 2). Each [HV10O28]5- cluster is surrounded by ten C5H12N+ cations. The N atoms of the organic cations are directing towards the doubly bridging O atoms of the cluster anion there by forming strong H-bonding. The NO3-anions contribute to the cohesion of the structure by hydrogen bonds (Fig 2). In fact, as can be seen from the packing diagram (Fig. 2), there are intermolecular hydrogen bonds between the nitrato O atoms and the N–H group of the piperidinium C5H12N+ cations.

Related literature top

For the biological activity of vanadium, see: Crans (1994); Elvingson et al. (1996). For its interactions with nitrogen compounds such as proteins and amino acids and its role in enzymatic reactions, see: Correia et al. (2004). For related structures, see: Ferreira da Silva et al. (2003); Maciejewska et al. (2003); Arrieta (1992); Wang et al. (2008); Wery et al. (1996).

Experimental top

The title compound was prepared by the reaction of vanadium (V) oxide (0.68 g, 3.74 mmol, Fluka, 99,9%), piperidin (1.72 g, 20.23 mmol, Fluka, > 99%), zinc nitrate (1.12 g, 3.77 mmol,Fluka, > 99%) and oxalic acid (1.23 g, 9.77 mmol, Prolabo, > 98%), dissolved in 40 ml ofdistilled water. Orange single crystals were obtained after six days from by slow evaporation at room temperature.

Refinement top

The positions of the H atoms attached to the piperidinium cations were placed at geometrically idealized positions (C–H = 0.97 Å, N–H =0.90 Å) and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(carrier atom). The hydrogen atom attached to the [V10O28] cluster could not be located but is included in the molecular formula. The disordered model was refined by using the tools available in the SHELXL97 (Sheldrick, 2008) software.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. View of the decavanadate unit of the title compound. Thermal ellipsoids are drawn at 35% probability. The purple spheres are vanadium atoms and the red spheres are oxygen atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. The purple spheres are vanadium atoms, the red spheres are oxygen atoms, the cyan spheres are nitrogen atoms, the green spheres are carbon atoms and the white spheres represent hydrogen atoms. Hydrogen bonds are shown as dashed lines.
Nonapiperidinium monohydrogen decavanadate tetranitrate top
Crystal data top
(C5H12N)9[HV10O28](NO3)4Z = 1
Mr = 1981.85F(000) = 1020
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.593 (2) ÅCell parameters from 25 reflections
b = 13.290 (2) Åθ = 11.8–15.2°
c = 14.676 (2) ŵ = 1.20 mm1
α = 105.858 (2)°T = 293 K
β = 110.335 (2)°Hexagone, orange
γ = 92.457 (2)°0.30 × 0.25 × 0.14 mm
V = 2015.6 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
6099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 1616
Tmin = 0.72, Tmax = 0.90l = 1817
9193 measured reflections2 standard reflections every 120 min
8755 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 1.3683P]
where P = (Fo2 + 2Fc2)/3
8755 reflections(Δ/σ)max = 0.001
598 parametersΔρmax = 0.71 e Å3
262 restraintsΔρmin = 0.32 e Å3
Crystal data top
(C5H12N)9[HV10O28](NO3)4γ = 92.457 (2)°
Mr = 1981.85V = 2015.6 (5) Å3
Triclinic, P1Z = 1
a = 11.593 (2) ÅMo Kα radiation
b = 13.290 (2) ŵ = 1.20 mm1
c = 14.676 (2) ÅT = 293 K
α = 105.858 (2)°0.30 × 0.25 × 0.14 mm
β = 110.335 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
6099 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.72, Tmax = 0.902 standard reflections every 120 min
9193 measured reflections intensity decay: 2%
8755 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043262 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
8755 reflectionsΔρmin = 0.32 e Å3
598 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.55004 (5)0.32924 (4)0.57070 (4)0.03398 (13)
V20.65119 (4)0.53839 (4)0.54702 (4)0.03033 (12)
V30.53337 (5)0.33546 (4)0.35568 (4)0.03371 (13)
V40.62554 (5)0.54954 (4)0.33350 (4)0.03911 (14)
V50.34440 (5)0.46252 (4)0.24253 (4)0.03735 (14)
O10.64328 (19)0.38796 (15)0.50197 (15)0.0347 (5)
O20.75038 (19)0.56505 (17)0.66911 (15)0.0381 (5)
O30.73307 (19)0.56874 (17)0.48006 (16)0.0398 (5)
O40.63901 (19)0.40224 (17)0.31868 (16)0.0402 (5)
O50.5792 (2)0.67820 (17)0.38378 (16)0.0405 (5)
O60.4801 (2)0.50774 (18)0.21948 (15)0.0442 (5)
O70.39219 (19)0.33201 (16)0.24371 (15)0.0384 (5)
O80.33299 (19)0.60716 (17)0.30494 (15)0.0388 (5)
O90.2324 (2)0.4357 (2)0.13345 (16)0.0544 (6)
O100.7271 (2)0.5810 (2)0.29078 (19)0.0591 (7)
O110.5568 (2)0.21462 (17)0.32664 (17)0.0479 (6)
O120.5744 (2)0.20838 (17)0.54415 (18)0.0493 (6)
O130.50819 (17)0.49809 (15)0.59153 (14)0.0329 (4)
O140.41649 (19)0.32453 (16)0.43204 (15)0.0377 (5)
NO10.0877 (6)0.0576 (4)0.2869 (3)0.0928 (15)
ON10.0314 (4)0.0356 (4)0.1946 (3)0.1313 (17)
ON20.0455 (4)0.0246 (3)0.3412 (3)0.1027 (12)
ON30.1908 (5)0.1153 (3)0.3274 (3)0.1214 (17)
NO2A0.7294 (9)0.2038 (8)0.0230 (6)0.067 (4)0.50
ON4A0.6735 (8)0.1750 (5)0.0262 (5)0.081 (2)0.50
ON5A0.8303 (11)0.2627 (12)0.0230 (8)0.118 (6)0.50
ON6A0.6819 (10)0.1762 (6)0.1164 (5)0.095 (3)0.50
NO2B0.3155 (9)0.7704 (8)0.0289 (7)0.069 (3)0.50
ON4B0.3787 (7)0.7673 (7)0.0239 (5)0.088 (2)0.50
ON5B0.2040 (8)0.7800 (15)0.0057 (10)0.111 (5)0.50
ON6B0.3636 (8)0.7675 (8)0.1167 (5)0.097 (3)0.50
NC10.1785 (3)0.7091 (2)0.1898 (2)0.0501 (7)
HC1A0.23260.67400.22510.060*
HC1B0.21500.73570.15460.060*
C110.1520 (4)0.7977 (3)0.2628 (3)0.0617 (10)
H11A0.09810.83900.22590.074*
H11B0.22910.84380.30950.074*
C120.0900 (4)0.7552 (4)0.3221 (4)0.0780 (13)
H12A0.06930.81340.36720.094*
H12B0.14720.71960.36390.094*
C130.0280 (4)0.6778 (4)0.2506 (5)0.0964 (17)
H13A0.06320.64740.28990.116*
H13B0.08900.71500.21420.116*
C140.0021 (4)0.5903 (4)0.1746 (4)0.0895 (16)
H14A0.05580.54850.21090.107*
H14B0.07430.54400.12680.107*
C150.0651 (4)0.6333 (3)0.1166 (3)0.0719 (12)
H15A0.08780.57580.07230.086*
H15B0.00870.66900.07430.086*
NC20.7900 (3)0.2878 (2)0.2361 (2)0.0481 (7)
HC2A0.75480.26360.16750.058*
HC2B0.73560.32230.25920.058*
C210.8144 (4)0.1962 (3)0.2766 (3)0.0592 (10)
H21A0.86860.15580.24850.071*
H21B0.73670.15010.25610.071*
C220.8749 (4)0.2352 (3)0.3914 (3)0.0674 (11)
H22A0.89490.17530.41660.081*
H22B0.81670.26870.41930.081*
C230.9934 (4)0.3139 (3)0.4281 (4)0.0705 (12)
H23A1.05620.27850.40800.085*
H23B1.02570.34230.50200.085*
C240.9644 (4)0.4038 (3)0.3813 (3)0.0666 (11)
H24A0.90890.44380.40790.080*
H24B1.04090.45120.40100.080*
C250.9051 (4)0.3631 (3)0.2668 (3)0.0665 (11)
H25A0.88490.42170.23960.080*
H25B0.96260.32770.23920.080*
NC30.2756 (3)0.1265 (2)0.5400 (2)0.0582 (8)
HC3A0.32660.18850.56360.070*
HC3B0.22390.11960.47580.070*
C310.3514 (4)0.0395 (3)0.5372 (3)0.0701 (12)
H31A0.39950.04330.49550.084*
H31B0.29710.02820.50690.084*
C320.4371 (4)0.0478 (4)0.6429 (4)0.0754 (13)
H32A0.49800.11130.66960.091*
H32B0.48140.01260.64070.091*
C330.3668 (5)0.0516 (4)0.7133 (4)0.0879 (15)
H33A0.42570.06420.78250.105*
H33B0.31510.01620.69270.105*
C340.2857 (5)0.1383 (4)0.7110 (4)0.0842 (14)
H34A0.23580.13400.75120.101*
H34B0.33850.20670.74180.101*
C350.2012 (4)0.1296 (4)0.6038 (4)0.0799 (14)
H35A0.14050.06580.57580.096*
H35B0.15680.18980.60450.096*
NC40.2310 (4)0.1475 (3)0.1487 (3)0.0796 (11)
HC4A0.27950.21090.18270.096*
HC4B0.18710.13550.18560.096*
C410.1427 (5)0.1505 (4)0.0468 (5)0.111 (2)
H41A0.08560.08430.01220.133*
H41B0.09430.20730.05680.133*
C420.2114 (6)0.1669 (5)0.0166 (5)0.114 (2)
H42A0.26190.23640.01500.137*
H42B0.15260.16510.08300.137*
C430.2948 (6)0.0835 (5)0.0303 (4)0.119 (2)
H43A0.34420.10070.06690.143*
H43B0.24410.01500.07010.143*
C440.3815 (5)0.0786 (5)0.0750 (4)0.0982 (17)
H44A0.42760.02000.06550.118*
H44B0.44090.14340.11020.118*
C450.3101 (5)0.0651 (4)0.1384 (4)0.0896 (16)
H45A0.25850.00380.10750.108*
H45B0.36760.06780.20560.108*
NC50.49590.6247 (10)0.0557 (12)0.074 (4)0.32
HC5A0.49930.61100.11330.089*0.32
HC5B0.48900.69350.06440.089*0.32
C510.38480.5597 (14)0.0301 (17)0.070 (6)0.32
H51A0.38010.57380.09260.084*0.32
H51B0.31040.57740.01730.084*0.32
C520.39270.4430 (15)0.0415 (18)0.054 (5)0.32
H52A0.39410.42730.01960.065*0.32
H52B0.32190.39880.09930.065*0.32
C530.51180.4239 (9)0.0582 (11)0.051 (3)0.32
H53A0.50730.43880.12030.061*0.32
H53B0.51980.34970.06780.061*0.32
C540.62660.4906 (16)0.0293 (16)0.063 (5)0.32
H54A0.63380.47590.09200.075*0.32
H54B0.70080.47490.01510.075*0.32
C550.61280.6047 (15)0.0395 (16)0.068 (5)0.32
H55A0.68300.65030.09680.081*0.32
H55B0.61080.62000.02190.081*0.32
NC60.493 (2)0.5751 (14)0.0322 (17)0.061 (5)0.18
HC6A0.49010.64500.01470.073*0.18
HC6B0.49110.55410.09640.073*0.18
C610.383 (2)0.519 (2)0.029 (3)0.067 (8)0.18
H61A0.30710.53520.07340.080*0.18
H61B0.38350.54010.04030.080*0.18
C620.389 (3)0.402 (2)0.064 (2)0.055 (7)0.18
H62A0.31590.36130.06520.066*0.18
H62B0.38970.38130.13210.066*0.18
C630.505 (3)0.3777 (17)0.0089 (19)0.061 (5)0.18
H63A0.50760.30230.01040.073*0.18
H63B0.50620.40060.07790.073*0.18
C640.617 (3)0.438 (2)0.003 (3)0.072 (8)0.18
H64A0.69420.42230.04730.087*0.18
H64B0.61500.41600.06610.087*0.18
C650.611 (2)0.555 (2)0.038 (3)0.058 (9)0.18
H65A0.61320.57620.10710.070*0.18
H65B0.68110.59520.03590.070*0.18
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0360 (3)0.0331 (3)0.0323 (3)0.0080 (2)0.0090 (2)0.0139 (2)
V20.0313 (3)0.0305 (3)0.0285 (2)0.0043 (2)0.0100 (2)0.0095 (2)
V30.0336 (3)0.0355 (3)0.0308 (3)0.0096 (2)0.0113 (2)0.0085 (2)
V40.0404 (3)0.0491 (3)0.0362 (3)0.0076 (2)0.0195 (2)0.0192 (2)
V50.0390 (3)0.0440 (3)0.0252 (2)0.0100 (2)0.0059 (2)0.0120 (2)
O10.0392 (11)0.0362 (11)0.0318 (10)0.0157 (9)0.0136 (9)0.0136 (9)
O20.0321 (11)0.0453 (12)0.0323 (11)0.0086 (9)0.0066 (9)0.0113 (9)
O30.0334 (11)0.0506 (13)0.0406 (12)0.0092 (10)0.0163 (9)0.0183 (10)
O40.0382 (12)0.0498 (13)0.0379 (11)0.0129 (10)0.0202 (10)0.0131 (10)
O50.0437 (12)0.0438 (12)0.0401 (12)0.0048 (10)0.0172 (10)0.0206 (10)
O60.0491 (13)0.0581 (14)0.0289 (11)0.0119 (11)0.0156 (10)0.0171 (10)
O70.0400 (12)0.0407 (12)0.0281 (10)0.0099 (9)0.0086 (9)0.0057 (9)
O80.0384 (12)0.0450 (12)0.0325 (11)0.0125 (9)0.0073 (9)0.0180 (9)
O90.0534 (15)0.0671 (16)0.0293 (11)0.0154 (12)0.0007 (10)0.0125 (11)
O100.0555 (15)0.0805 (18)0.0568 (15)0.0059 (13)0.0327 (13)0.0307 (14)
O110.0520 (14)0.0419 (13)0.0459 (13)0.0170 (11)0.0162 (11)0.0085 (10)
O120.0586 (15)0.0373 (12)0.0521 (14)0.0147 (11)0.0158 (12)0.0196 (11)
O130.0334 (11)0.0424 (11)0.0284 (10)0.0150 (9)0.0135 (9)0.0157 (9)
O140.0408 (12)0.0439 (12)0.0348 (11)0.0174 (10)0.0160 (9)0.0180 (9)
NO10.134 (4)0.092 (3)0.064 (3)0.068 (3)0.041 (3)0.030 (3)
ON10.117 (3)0.198 (5)0.060 (2)0.044 (3)0.014 (2)0.033 (3)
ON20.116 (3)0.110 (3)0.095 (3)0.043 (2)0.049 (3)0.035 (2)
ON30.186 (5)0.098 (3)0.058 (2)0.006 (3)0.024 (3)0.022 (2)
NO2A0.110 (12)0.045 (6)0.053 (6)0.020 (7)0.033 (8)0.019 (4)
ON4A0.142 (7)0.053 (4)0.055 (4)0.003 (4)0.048 (4)0.013 (3)
ON5A0.111 (8)0.157 (15)0.083 (7)0.008 (7)0.033 (6)0.039 (8)
ON6A0.178 (10)0.057 (4)0.051 (4)0.002 (5)0.045 (5)0.017 (3)
NO2B0.088 (7)0.056 (7)0.063 (6)0.012 (5)0.031 (5)0.017 (4)
ON4B0.111 (6)0.091 (6)0.073 (5)0.003 (5)0.051 (4)0.023 (4)
ON5B0.093 (10)0.119 (13)0.104 (10)0.026 (9)0.025 (8)0.024 (8)
ON6B0.116 (7)0.116 (7)0.060 (5)0.001 (6)0.030 (4)0.035 (5)
NC10.0494 (17)0.0560 (18)0.0535 (17)0.0200 (14)0.0160 (14)0.0325 (15)
C110.057 (2)0.055 (2)0.066 (3)0.0146 (18)0.015 (2)0.0149 (19)
C120.073 (3)0.093 (3)0.076 (3)0.024 (3)0.039 (3)0.021 (3)
C130.057 (3)0.110 (4)0.133 (5)0.014 (3)0.049 (3)0.037 (4)
C140.055 (3)0.075 (3)0.121 (4)0.004 (2)0.022 (3)0.019 (3)
C150.065 (3)0.066 (3)0.060 (3)0.017 (2)0.000 (2)0.011 (2)
NC20.0444 (16)0.0531 (17)0.0442 (16)0.0118 (13)0.0191 (13)0.0071 (13)
C210.051 (2)0.047 (2)0.073 (3)0.0094 (17)0.020 (2)0.0117 (19)
C220.056 (2)0.070 (3)0.074 (3)0.015 (2)0.011 (2)0.035 (2)
C230.045 (2)0.065 (3)0.082 (3)0.0108 (19)0.005 (2)0.019 (2)
C240.043 (2)0.053 (2)0.085 (3)0.0018 (17)0.010 (2)0.011 (2)
C250.063 (3)0.066 (3)0.084 (3)0.013 (2)0.041 (2)0.026 (2)
NC30.0533 (19)0.0462 (17)0.0531 (18)0.0058 (14)0.0070 (15)0.0004 (14)
C310.073 (3)0.052 (2)0.078 (3)0.009 (2)0.035 (2)0.001 (2)
C320.080 (3)0.066 (3)0.093 (3)0.027 (2)0.037 (3)0.036 (3)
C330.112 (4)0.071 (3)0.103 (4)0.017 (3)0.051 (3)0.047 (3)
C340.105 (4)0.086 (3)0.083 (3)0.023 (3)0.056 (3)0.030 (3)
C350.066 (3)0.076 (3)0.105 (4)0.012 (2)0.047 (3)0.018 (3)
NC40.067 (2)0.054 (2)0.111 (3)0.0089 (18)0.025 (2)0.027 (2)
C410.063 (3)0.074 (4)0.149 (6)0.007 (3)0.009 (4)0.028 (4)
C420.119 (5)0.084 (4)0.097 (4)0.003 (4)0.013 (4)0.032 (3)
C430.145 (6)0.105 (5)0.066 (3)0.008 (4)0.012 (4)0.002 (3)
C440.095 (4)0.091 (4)0.088 (4)0.022 (3)0.020 (3)0.012 (3)
C450.087 (4)0.060 (3)0.093 (4)0.006 (3)0.004 (3)0.018 (3)
NC50.090 (8)0.066 (8)0.049 (7)0.001 (6)0.019 (6)0.002 (8)
C510.069 (8)0.056 (10)0.072 (11)0.005 (7)0.024 (7)0.002 (9)
C520.060 (7)0.056 (9)0.038 (11)0.016 (8)0.014 (8)0.009 (10)
C530.071 (7)0.045 (7)0.039 (6)0.010 (5)0.019 (5)0.020 (6)
C540.051 (7)0.083 (12)0.048 (10)0.000 (8)0.015 (7)0.017 (12)
C550.083 (8)0.069 (9)0.041 (9)0.022 (8)0.020 (7)0.010 (8)
NC60.084 (11)0.044 (9)0.061 (11)0.015 (9)0.037 (9)0.012 (9)
C610.057 (10)0.040 (13)0.055 (16)0.019 (10)0.010 (12)0.015 (14)
C620.083 (11)0.046 (12)0.037 (13)0.008 (11)0.033 (9)0.003 (12)
C630.100 (14)0.047 (11)0.038 (11)0.012 (10)0.042 (9)0.005 (10)
C640.075 (11)0.058 (14)0.068 (17)0.006 (12)0.009 (12)0.018 (13)
C650.061 (10)0.059 (12)0.041 (17)0.007 (12)0.022 (12)0.006 (16)
Geometric parameters (Å, º) top
V1—O121.608 (2)C23—C241.528 (6)
V1—O8i1.795 (2)C23—H23A0.9700
V1—O5i1.849 (2)C23—H23B0.9700
V1—O11.978 (2)C24—C251.502 (6)
V1—O142.067 (2)C24—H24A0.9700
V1—O132.277 (2)C24—H24B0.9700
V1—V33.1180 (8)C25—H25A0.9700
V2—O21.687 (2)C25—H25B0.9700
V2—O31.692 (2)NC3—C351.472 (5)
V2—O11.914 (2)NC3—C311.482 (5)
V2—O14i2.003 (2)NC3—HC3A0.9000
V2—O132.081 (2)NC3—HC3B0.9000
V2—O13i2.1346 (19)C31—C321.493 (6)
V2—V5i3.0747 (8)C31—H31A0.9700
V2—V43.0887 (8)C31—H31B0.9700
V3—O111.606 (2)C32—C331.515 (6)
V3—O41.793 (2)C32—H32A0.9700
V3—O71.861 (2)C32—H32B0.9700
V3—O11.981 (2)C33—C341.519 (6)
V3—O142.059 (2)C33—H33A0.9700
V3—O13i2.2672 (19)C33—H33B0.9700
V3—V53.1193 (8)C34—C351.506 (7)
V4—O101.602 (2)C34—H34A0.9700
V4—O61.845 (2)C34—H34B0.9700
V4—O51.850 (2)C35—H35A0.9700
V4—O41.929 (2)C35—H35B0.9700
V4—O32.014 (2)NC4—C451.468 (6)
V4—O13i2.345 (2)NC4—C411.502 (7)
V4—V53.0906 (9)NC4—HC4A0.9000
V5—O91.606 (2)NC4—HC4B0.9000
V5—O61.830 (2)C41—C421.469 (8)
V5—O71.846 (2)C41—H41A0.9700
V5—O81.922 (2)C41—H41B0.9700
V5—O2i2.059 (2)C42—C431.521 (8)
V5—O13i2.3366 (19)C42—H42A0.9700
V5—V2i3.0747 (8)C42—H42B0.9700
O2—V5i2.059 (2)C43—C441.542 (7)
O5—V1i1.849 (2)C43—H43A0.9700
O8—V1i1.795 (2)C43—H43B0.9700
O13—V2i2.1346 (19)C44—C451.482 (7)
O13—V3i2.2672 (19)C44—H44A0.9700
O13—V5i2.3366 (19)C44—H44B0.9700
O13—V4i2.345 (2)C45—H45A0.9700
O14—V2i2.003 (2)C45—H45B0.9700
NO1—ON11.224 (5)NC5—C511.475 (12)
NO1—ON21.229 (6)NC5—C551.477 (11)
NO1—ON31.244 (6)NC5—HC5A0.9000
NO2A—ON6A1.224 (8)NC5—HC5B0.9000
NO2A—ON5A1.233 (8)C51—C521.524 (14)
NO2A—ON4A1.243 (8)C51—H51A0.9700
NO2B—ON6B1.227 (8)C51—H51B0.9700
NO2B—ON4B1.232 (8)C52—C531.503 (12)
NO2B—ON5B1.241 (8)C52—H52A0.9700
NC1—C111.484 (4)C52—H52B0.9700
NC1—C151.486 (5)C53—C541.515 (12)
NC1—HC1A0.9000C53—H53A0.9700
NC1—HC1B0.9000C53—H53B0.9700
C11—C121.504 (6)C54—C551.503 (15)
C11—H11A0.9700C54—H54A0.9700
C11—H11B0.9700C54—H54B0.9700
C12—C131.524 (6)C55—H55A0.9700
C12—H12A0.9700C55—H55B0.9700
C12—H12B0.9700NC6—C611.474 (17)
C13—C141.521 (6)NC6—C651.482 (16)
C13—H13A0.9700NC6—HC6A0.9000
C13—H13B0.9700NC6—HC6B0.9000
C14—C151.499 (6)C61—C621.516 (17)
C14—H14A0.9700C61—H61A0.9700
C14—H14B0.9700C61—H61B0.9700
C15—H15A0.9700C62—C631.508 (17)
C15—H15B0.9700C62—H62A0.9700
NC2—C251.485 (5)C62—H62B0.9700
NC2—C211.491 (5)C63—C641.535 (17)
NC2—HC2A0.9000C63—H63A0.9700
NC2—HC2B0.9000C63—H63B0.9700
C21—C221.506 (6)C64—C651.514 (17)
C21—H21A0.9700C64—H64A0.9700
C21—H21B0.9700C64—H64B0.9700
C22—C231.525 (6)C65—H65A0.9700
C22—H22A0.9700C65—H65B0.9700
C22—H22B0.9700
O12—V1—O8i104.18 (11)C14—C13—H13A109.7
O12—V1—O5i101.89 (11)C12—C13—H13A109.7
O8i—V1—O5i95.28 (10)C14—C13—H13B109.7
O12—V1—O1100.96 (11)C12—C13—H13B109.7
O8i—V1—O192.68 (9)H13A—C13—H13B108.2
O5i—V1—O1153.11 (9)C15—C14—C13112.1 (4)
O12—V1—O1499.69 (10)C15—C14—H14A109.2
O8i—V1—O14155.02 (9)C13—C14—H14A109.2
O5i—V1—O1486.82 (9)C15—C14—H14B109.2
O1—V1—O1475.51 (8)C13—C14—H14B109.2
O12—V1—O13174.38 (10)H14A—C14—H14B107.9
O8i—V1—O1380.74 (8)NC1—C15—C14109.4 (4)
O5i—V1—O1380.13 (8)NC1—C15—H15A109.8
O1—V1—O1375.87 (7)C14—C15—H15A109.8
O14—V1—O1375.10 (7)NC1—C15—H15B109.8
O12—V1—V390.74 (9)C14—C15—H15B109.8
O8i—V1—V3130.72 (7)H15A—C15—H15B108.3
O5i—V1—V3127.63 (7)C25—NC2—C21112.5 (3)
O1—V1—V338.07 (6)C25—NC2—HC2A109.1
O14—V1—V340.83 (6)C21—NC2—HC2A109.1
O13—V1—V383.92 (5)C25—NC2—HC2B109.1
O2—V2—O3107.57 (11)C21—NC2—HC2B109.1
O2—V2—O199.52 (9)HC2A—NC2—HC2B107.8
O3—V2—O197.77 (10)NC2—C21—C22109.9 (3)
O2—V2—O14i95.78 (9)NC2—C21—H21A109.7
O3—V2—O14i94.86 (10)C22—C21—H21A109.7
O1—V2—O14i156.18 (9)NC2—C21—H21B109.7
O2—V2—O1388.43 (9)C22—C21—H21B109.7
O3—V2—O13163.72 (9)H21A—C21—H21B108.2
O1—V2—O1382.11 (8)C21—C22—C23111.9 (4)
O14i—V2—O1380.16 (8)C21—C22—H22A109.2
O2—V2—O13i165.82 (9)C23—C22—H22A109.2
O3—V2—O13i86.29 (9)C21—C22—H22B109.2
O1—V2—O13i81.06 (8)C23—C22—H22B109.2
O14i—V2—O13i79.69 (8)H22A—C22—H22B107.9
O13—V2—O13i77.59 (8)C22—C23—C24109.4 (3)
O2—V2—V5i39.01 (7)C22—C23—H23A109.8
O3—V2—V5i146.50 (8)C24—C23—H23A109.8
O1—V2—V5i92.17 (6)C22—C23—H23B109.8
O14i—V2—V5i88.30 (6)C24—C23—H23B109.8
O13—V2—V5i49.42 (5)H23A—C23—H23B108.2
O13i—V2—V5i126.97 (6)C25—C24—C23111.8 (3)
O2—V2—V4144.46 (8)C25—C24—H24A109.3
O3—V2—V436.99 (7)C23—C24—H24A109.3
O1—V2—V490.73 (6)C25—C24—H24B109.3
O14i—V2—V487.29 (6)C23—C24—H24B109.3
O13—V2—V4126.83 (5)H24A—C24—H24B107.9
O13i—V2—V449.30 (5)NC2—C25—C24109.4 (3)
V5i—V2—V4174.76 (2)NC2—C25—H25A109.8
O11—V3—O4103.86 (11)C24—C25—H25A109.8
O11—V3—O7101.51 (11)NC2—C25—H25B109.8
O4—V3—O795.26 (10)C24—C25—H25B109.8
O11—V3—O1100.88 (10)H25A—C25—H25B108.2
O4—V3—O192.61 (9)C35—NC3—C31114.1 (4)
O7—V3—O1153.70 (9)C35—NC3—HC3A108.7
O11—V3—O1499.32 (11)C31—NC3—HC3A108.7
O4—V3—O14155.65 (9)C35—NC3—HC3B108.7
O7—V3—O1487.27 (9)C31—NC3—HC3B108.7
O1—V3—O1475.62 (8)HC3A—NC3—HC3B107.6
O11—V3—O13i173.84 (10)NC3—C31—C32110.0 (3)
O4—V3—O13i81.88 (8)NC3—C31—H31A109.7
O7—V3—O13i79.94 (8)C32—C31—H31A109.7
O1—V3—O13i76.38 (7)NC3—C31—H31B109.7
O14—V3—O13i74.71 (8)C32—C31—H31B109.7
O11—V3—V190.45 (9)H31A—C31—H31B108.2
O4—V3—V1130.59 (7)C31—C32—C33111.6 (4)
O7—V3—V1128.29 (7)C31—C32—H32A109.3
O1—V3—V137.99 (6)C33—C32—H32A109.3
O14—V3—V141.02 (6)C31—C32—H32B109.3
O13i—V3—V184.03 (5)C33—C32—H32B109.3
O11—V3—V5133.84 (8)H32A—C32—H32B108.0
O4—V3—V583.23 (7)C32—C33—C34111.2 (4)
O7—V3—V532.56 (6)C32—C33—H33A109.4
O1—V3—V5124.61 (6)C34—C33—H33A109.4
O14—V3—V586.12 (6)C32—C33—H33B109.4
O13i—V3—V548.29 (5)C34—C33—H33B109.4
V1—V3—V5119.61 (2)H33A—C33—H33B108.0
O10—V4—O6103.65 (12)C35—C34—C33112.0 (4)
O10—V4—O5103.03 (12)C35—C34—H34A109.2
O6—V4—O592.59 (10)C33—C34—H34A109.2
O10—V4—O4100.98 (12)C35—C34—H34B109.2
O6—V4—O488.62 (10)C33—C34—H34B109.2
O5—V4—O4154.94 (9)H34A—C34—H34B107.9
O10—V4—O3101.07 (11)NC3—C35—C34109.5 (4)
O6—V4—O3154.99 (9)NC3—C35—H35A109.8
O5—V4—O385.48 (9)C34—C35—H35A109.8
O4—V4—O382.99 (9)NC3—C35—H35B109.8
O10—V4—O13i174.85 (11)C34—C35—H35B109.8
O6—V4—O13i81.17 (8)H35A—C35—H35B108.2
O5—V4—O13i78.32 (8)C45—NC4—C41112.1 (4)
O4—V4—O13i77.15 (8)C45—NC4—HC4A109.2
O3—V4—O13i74.01 (8)C41—NC4—HC4A109.2
O10—V4—V2131.42 (10)C45—NC4—HC4B109.2
O6—V4—V2124.76 (7)C41—NC4—HC4B109.2
O5—V4—V280.44 (7)HC4A—NC4—HC4B107.9
O4—V4—V278.37 (6)C42—C41—NC4110.5 (4)
O3—V4—V230.36 (6)C42—C41—H41A109.5
O13i—V4—V243.65 (5)NC4—C41—H41A109.5
O10—V4—V5136.23 (10)C42—C41—H41B109.5
O6—V4—V532.60 (7)NC4—C41—H41B109.5
O5—V4—V585.55 (7)H41A—C41—H41B108.1
O4—V4—V582.07 (7)C41—C42—C43112.1 (5)
O3—V4—V5122.51 (6)C41—C42—H42A109.2
O13i—V4—V548.57 (5)C43—C42—H42A109.2
V2—V4—V592.184 (19)C41—C42—H42B109.2
O9—V5—O6103.89 (12)C43—C42—H42B109.2
O9—V5—O7102.81 (11)H42A—C42—H42B107.9
O6—V5—O793.08 (10)C42—C43—C44109.9 (5)
O9—V5—O8101.31 (11)C42—C43—H43A109.7
O6—V5—O889.64 (10)C44—C43—H43A109.7
O7—V5—O8154.30 (9)C42—C43—H43B109.7
O9—V5—O2i100.73 (11)C44—C43—H43B109.7
O6—V5—O2i155.14 (9)H43A—C43—H43B108.2
O7—V5—O2i84.73 (9)C45—C44—C43111.4 (5)
O8—V5—O2i82.19 (9)C45—C44—H44A109.3
O9—V5—O13i174.15 (11)C43—C44—H44A109.3
O6—V5—O13i81.70 (8)C45—C44—H44B109.3
O7—V5—O13i78.39 (8)C43—C44—H44B109.3
O8—V5—O13i76.73 (8)H44A—C44—H44B108.0
O2i—V5—O13i73.60 (7)NC4—C45—C44111.7 (4)
O9—V5—V2i131.76 (10)NC4—C45—H45A109.3
O6—V5—V2i124.20 (7)C44—C45—H45A109.3
O7—V5—V2i80.10 (6)NC4—C45—H45B109.3
O8—V5—V2i77.28 (6)C44—C45—H45B109.3
O2i—V5—V2i31.04 (6)H45A—C45—H45B108.0
O13i—V5—V2i42.56 (5)C51—NC5—C55112.7 (11)
O9—V5—V4136.76 (10)C51—NC5—HC5A109.0
O6—V5—V432.90 (7)C55—NC5—HC5A109.0
O7—V5—V486.10 (7)C51—NC5—HC5B109.0
O8—V5—V482.40 (7)C55—NC5—HC5B109.0
O2i—V5—V4122.33 (6)HC5A—NC5—HC5B107.8
O13i—V5—V448.80 (5)NC5—C51—C52109.3 (11)
V2i—V5—V491.317 (19)NC5—C51—H51A109.8
O9—V5—V3135.45 (9)C52—C51—H51A109.8
O6—V5—V381.46 (7)NC5—C51—H51B109.8
O7—V5—V332.87 (6)C52—C51—H51B109.8
O8—V5—V3123.11 (6)H51A—C51—H51B108.3
O2i—V5—V383.46 (6)C53—C52—C51105.9 (10)
O13i—V5—V346.42 (5)C53—C52—H52A110.6
V2i—V5—V363.252 (17)C51—C52—H52A110.6
V4—V5—V360.646 (19)C53—C52—H52B110.6
V2—O1—V1106.75 (9)C51—C52—H52B110.6
V2—O1—V3107.80 (9)H52A—C52—H52B108.7
V1—O1—V3103.94 (10)C52—C53—C54113.5 (11)
V2—O2—V5i109.95 (11)C52—C53—H53A108.9
V2—O3—V4112.65 (11)C54—C53—H53A108.9
V3—O4—V4114.73 (10)C52—C53—H53B108.9
V1i—O5—V4115.14 (11)C54—C53—H53B108.9
V5—O6—V4114.50 (11)H53A—C53—H53B107.7
V5—O7—V3114.57 (11)C55—C54—C53107.3 (10)
V1i—O8—V5115.62 (10)C55—C54—H54A110.3
V2—O13—V2i102.41 (8)C53—C54—H54A110.3
V2—O13—V3i96.58 (8)C55—C54—H54B110.3
V2i—O13—V3i91.23 (7)C53—C54—H54B110.3
V2—O13—V191.44 (7)H54A—C54—H54B108.5
V2i—O13—V195.85 (8)NC5—C55—C54108.9 (11)
V3i—O13—V1167.94 (9)NC5—C55—H55A109.9
V2—O13—V5i88.02 (7)C54—C55—H55A109.9
V2i—O13—V5i169.33 (10)NC5—C55—H55B109.9
V3i—O13—V5i85.29 (7)C54—C55—H55B109.9
V1—O13—V5i86.00 (6)H55A—C55—H55B108.3
V2—O13—V4i170.19 (9)C61—NC6—C65112.0 (19)
V2i—O13—V4i87.06 (7)C61—NC6—HC6A109.2
V3i—O13—V4i85.64 (6)C65—NC6—HC6A109.2
V1—O13—V4i84.98 (7)C61—NC6—HC6B109.2
V5i—O13—V4i82.63 (6)C65—NC6—HC6B109.2
V2i—O14—V3106.17 (9)HC6A—NC6—HC6B107.9
V2i—O14—V1107.18 (9)NC6—C61—C62107.0 (18)
V3—O14—V198.15 (9)NC6—C61—H61A110.3
ON1—NO1—ON2122.1 (7)C62—C61—H61A110.3
ON1—NO1—ON3119.3 (6)NC6—C61—H61B110.3
ON2—NO1—ON3118.7 (5)C62—C61—H61B110.3
ON6A—NO2A—ON5A120.8 (8)H61A—C61—H61B108.6
ON6A—NO2A—ON4A119.7 (7)C63—C62—C61109.3 (18)
ON5A—NO2A—ON4A119.5 (7)C63—C62—H62A109.8
ON6B—NO2B—ON4B120.1 (7)C61—C62—H62A109.8
ON6B—NO2B—ON5B119.9 (8)C63—C62—H62B109.8
ON4B—NO2B—ON5B120.0 (8)C61—C62—H62B109.8
C11—NC1—C15113.1 (3)H62A—C62—H62B108.3
C11—NC1—HC1A109.0C62—C63—C64107.7 (17)
C15—NC1—HC1A109.0C62—C63—H63A110.2
C11—NC1—HC1B109.0C64—C63—H63A110.2
C15—NC1—HC1B109.0C62—C63—H63B110.2
HC1A—NC1—HC1B107.8C64—C63—H63B110.2
NC1—C11—C12110.0 (3)H63A—C63—H63B108.5
NC1—C11—H11A109.7C65—C64—C63107.7 (18)
C12—C11—H11A109.7C65—C64—H64A110.2
NC1—C11—H11B109.7C63—C64—H64A110.2
C12—C11—H11B109.7C65—C64—H64B110.2
H11A—C11—H11B108.2C63—C64—H64B110.2
C11—C12—C13110.9 (4)H64A—C64—H64B108.5
C11—C12—H12A109.5NC6—C65—C64108.5 (18)
C13—C12—H12A109.5NC6—C65—H65A110.0
C11—C12—H12B109.5C64—C65—H65A110.0
C13—C12—H12B109.5NC6—C65—H65B110.0
H12A—C12—H12B108.0C64—C65—H65B110.0
C14—C13—C12109.9 (4)H65A—C65—H65B108.4
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
NC1—HC1A···O80.901.802.693 (3)174
NC1—HC1B···ON6Aii0.901.952.829 (8)164
NC1—HC1B···ON6B0.902.052.876 (9)153
NC1—HC1B···ON5Aii0.902.483.214 (12)139
NC1—HC1B···ON5B0.902.543.355 (13)151
NC2—HC2A···ON4A0.901.952.824 (7)164
NC2—HC2A···ON4Bii0.902.052.909 (8)159
NC2—HC2A···ON5Bii0.902.503.280 (13)145
NC2—HC2A···ON5A0.902.563.251 (12)134
NC2—HC2B···O40.901.852.746 (3)174
NC3—HC3A···O5i0.901.852.749 (4)175
NC3—HC3B···ON30.902.062.885 (5)152
NC3—HC3B···ON20.902.313.095 (5)145
NC4—HC4A···O70.901.822.716 (4)172
NC4—HC4B···ON30.902.162.954 (6)147
NC4—HC4B···ON10.902.263.060 (6)148
NC5—HC5A···O60.902.403.248 (17)158
NC6—HC6A···ON4B0.902.122.92 (2)147
NC6—HC6B···O6ii0.901.922.80 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H12N)9[HV10O28](NO3)4
Mr1981.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.593 (2), 13.290 (2), 14.676 (2)
α, β, γ (°)105.858 (2), 110.335 (2), 92.457 (2)
V3)2015.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.30 × 0.25 × 0.14
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.72, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
9193, 8755, 6099
Rint0.047
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.04
No. of reflections8755
No. of parameters598
No. of restraints262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.32

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
NC1—HC1A···O80.901.802.693 (3)174.1
NC1—HC1B···ON6Ai0.901.952.829 (8)163.5
NC1—HC1B···ON6B0.902.052.876 (9)152.7
NC1—HC1B···ON5Ai0.902.483.214 (12)139.0
NC1—HC1B···ON5B0.902.543.355 (13)150.7
NC2—HC2A···ON4A0.901.952.824 (7)164.4
NC2—HC2A···ON4Bi0.902.052.909 (8)158.5
NC2—HC2A···ON5Bi0.902.503.280 (13)144.9
NC2—HC2A···ON5A0.902.563.251 (12)134.4
NC2—HC2B···O40.901.852.746 (3)173.6
NC3—HC3A···O5ii0.901.852.749 (4)174.8
NC3—HC3B···ON30.902.062.885 (5)151.9
NC3—HC3B···ON20.902.313.095 (5)145.3
NC4—HC4A···O70.901.822.716 (4)172.3
NC4—HC4B···ON30.902.162.954 (6)147.4
NC4—HC4B···ON10.902.263.060 (6)148.2
NC5—HC5A···O60.902.403.248 (17)157.8
NC6—HC6A···ON4B0.902.122.92 (2)147.2
NC6—HC6B···O6i0.901.922.80 (2)166.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

References

First citationArrieta, J. M. (1992). Polyhedron, 11, 3045–3068.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationCorreia, I., Avecilla, F., Marcao, S. & Pessoa, J. C. (2004). Inorg. Chim. Acta, 357, 4476–4487.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrans, D. (1994). Comments Inorg. Chem. 16, 1–33.  CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElvingson, K., GonzálezBaró, A. & Pettersson, L. (1996). Inorg. Chem. 35, 3388–3393.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFerreira da Silva, J. L., Piedade, M. F. M. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222–242.  Web of Science CrossRef CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMaciejewska, G., Nosek, M., Glowiak, T., Starosta, J. & Cieslak-Golonka, M. (2003). Polyhedron, 22, 1415–1424.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWery, A. S. J., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. (1996). Polyhedron, 15, 4555–4564.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m953-m954
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds