metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,1′-(Butane-1,4-di­yl)di-1H-benz­imidazole-κ2N3:N3′]bis­­{[N,N′-bis­(car­b­oxy­meth­yl)ethyl­enedi­amine-N,N′-di­acetato-κ5O,O′,O′′,N,N′]mercury(II)} methanol disolvate

aKey Laboratory of Surface and Interface Science of Henan, School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: zhuxuew@126.com

(Received 24 May 2009; accepted 6 July 2009; online 11 July 2009)

The binuclear title complex, [Hg2(C10H14N2O8)2(C18H18N4)]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octa­hedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex and solvent mol­ecules into a three-dimensional network.

Related literature

For the synthesis, see: Xiao et al. (2004[Xiao, B., Han, H. Y., Meng, X. R., Song, Y. L. & Hou, H. W. (2004). Inorg. Chem. Commun. 7, 378-381.]); Xie et al. (2002[Xie, X. J., Yang, G. S., Cheng, L. & Wang, F. (2002). HuaxueShiji (Chin. Ed.), 22, 222-223]). For bond lengths related mercury compounds, see: Guo & Dong (2009[Guo, W.-Y. & Dong, G.-Y. (2009). Acta Cryst. E65, m217.]); Aghabozorg, et al. (2008[Aghabozorg, H., Bagheri, S., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m1065-m1066.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2(C10H14N2O8)2(C18H18N4)]·2CH4O

  • Mr = 1336.09

  • Monoclinic, P 21 /n

  • a = 10.274 (2) Å

  • b = 19.990 (3) Å

  • c = 11.4717 (17) Å

  • β = 104.035 (13)°

  • V = 2285.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.79 mm−1

  • T = 291 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.21, Tmax = 0.29

  • 14826 measured reflections

  • 4397 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.04

  • 4397 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.60 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.138 (6)
Hg1—N4 2.364 (6)
Hg1—N3 2.390 (6)
Hg1—O3 2.473 (5)
Hg1—O5 2.547 (5)
Hg1—O1 2.604 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.74 2.534 (7) 164
O8—H8⋯O4ii 0.82 1.84 2.462 (7) 131
O9—H9⋯O6iii 0.82 2.00 2.744 (7) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research of transition metal-organic polymers has been rapidly expanding because of their intriguing topologies and potential applications in catalysis, fluorescence, electrical conductivity and magnetism. As a result, the preparation of coordination polymers with fascinating frameworks has attracted considerable attention in recent years. For our group, metal-organic nonlinear optical (NLO) materials are of interest for various applications such as optical data processing and biological imaging (Xiao et al., 2004). Some mercury complexes have already been synthesised (Guo, et al., 2009; Aghabozorg et al., 2008), and herein we present the synthesis and crystal structure of the title complex (I) using EDTA and bbbm (Xie, et al., 2002) as ligands. The molecular structure of the title complex is shown in Fig. 1. The dinuclear complex lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral coordination environment with one Hg—N bond significantly shorter than the other two, most likely, in part, as a results of steric effects from the bulky ligands. The Hg-O bond lengths are in agreement with those found in related Hg(II) complexes (Guo & Dong, 2009; Aghabozorg, et al., 2008). The intramolecular Hg···Hg distance is ca. 12.21Å. In the crystal structure, intermolecular O-H···O hydrogen bonds link complex and solvent molecules into a three-dimensional network (Fig. 2). In addition there are weak π···π stacking interactions between benzimidazole rings related by inversion symmetry with a centroid to centroid distance of 3.556 (4)Å.

Related literature top

For the synthesis, see: Bo Xiao et al. (2004); Xie et al. (2002). For bond lengths related mercury compounds, see: Guo & Dong (2009); Aghabozorg, et al. (2008).

Experimental top

Methanol solutions of HgCl2.2H2O (76 mg, 0.2 mmol), Na2edta (67 mg, 0.2 mmol) and 1, 1'-(1,4-butylidene)bis-1H-benzimidazole (15 mg, 0.1 mmol) were mixed in a 2:2:1 molar ratio, and the reaction mixture was stirred at about 300 K for 2 h. Colourless crystals ofthe title compound were obtained from the solution after three weeks at room temperature.

Refinement top

H atoms were placed in calculated positions with O-H = 0.82Å and C-H = 0.93-0.98Å and included in calculated postions with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with ellipsoids shown at the 30% level. Symmetry code: (A) 1-x, 2-y, -z. The symmetry related solvent methanol molecule is not shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms included in the hydrogen bonds have been included.
[µ-1,1'-(Butane-1,4-diyl)di-1H-benzimidazole-κ2N3: N3']bis{[N,N'-bis(carboxymethyl)ethylenediamine- N,N'-diacetato-κ5O,O',O'',N, N']mercury(II)} methanol disolvate top
Crystal data top
[Hg2(C10H14N2O8)2(C18H18N4)]·2CH4OF(000) = 1308
Mr = 1336.09Dx = 1.941 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2608 reflections
a = 10.274 (2) Åθ = 2.4–25.3°
b = 19.990 (3) ŵ = 6.79 mm1
c = 11.4717 (17) ÅT = 291 K
β = 104.035 (13)°Prism, colorless
V = 2285.7 (7) Å30.24 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
4397 independent reflections
Radiation source: sealed tube3744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.21, Tmax = 0.29k = 2324
14826 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.08P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4397 reflectionsΔρmax = 1.08 e Å3
310 parametersΔρmin = 1.60 e Å3
0 restraintsAbsolute structure: Refinement
Primary atom site location: structure-invariant direct methods
Crystal data top
[Hg2(C10H14N2O8)2(C18H18N4)]·2CH4OV = 2285.7 (7) Å3
Mr = 1336.09Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.274 (2) ŵ = 6.79 mm1
b = 19.990 (3) ÅT = 291 K
c = 11.4717 (17) Å0.24 × 0.20 × 0.18 mm
β = 104.035 (13)°
Data collection top
Bruker SMART APEX
diffractometer
4397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3744 reflections with I > 2σ(I)
Tmin = 0.21, Tmax = 0.29Rint = 0.062
14826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 1.08 e Å3
4397 reflectionsΔρmin = 1.60 e Å3
310 parametersAbsolute structure: Refinement
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1031 (7)0.0816 (3)1.0464 (6)0.0335 (15)
C20.0283 (8)0.1117 (4)1.1206 (6)0.0395 (17)
H2A0.02160.15061.09970.047*
C30.0363 (8)0.0778 (4)1.2276 (7)0.0421 (17)
H30.01520.09241.27910.051*
C40.1222 (7)0.0205 (4)1.2612 (6)0.0357 (15)
H40.12890.00081.33590.043*
C50.1937 (7)0.0058 (4)1.1866 (6)0.0370 (16)
H50.24900.04281.20850.044*
C60.1803 (7)0.0253 (4)1.0767 (7)0.0379 (16)
C70.1798 (7)0.0552 (4)0.8889 (7)0.0419 (17)
H70.19370.05370.81180.050*
C80.3271 (7)0.0452 (4)0.9728 (7)0.0393 (16)
H8A0.32030.05670.88940.047*
H8B0.30100.08421.01210.047*
C90.4721 (7)0.0270 (4)1.0330 (7)0.0414 (18)
H9A0.47700.01211.11440.050*
H9B0.52750.06671.03760.050*
C100.0718 (8)0.3206 (4)0.9820 (7)0.0406 (17)
C110.0801 (8)0.3230 (3)0.9266 (7)0.0349 (16)
H11A0.12790.30250.98060.042*
H11B0.10980.36900.91300.042*
C120.2518 (7)0.2659 (4)0.7742 (7)0.0370 (15)
H12A0.27590.25490.68930.044*
H12B0.30760.30290.78730.044*
C130.2778 (7)0.2037 (4)0.8490 (6)0.0321 (15)
C140.0796 (8)0.3303 (3)0.7160 (6)0.0348 (15)
H14A0.00020.35640.74970.042*
H14B0.15390.36110.68940.042*
C150.0589 (8)0.2912 (4)0.6100 (7)0.0385 (16)
H15A0.14280.27000.56990.046*
H15B0.03410.32180.55340.046*
C160.0334 (8)0.1861 (3)0.5512 (7)0.0356 (15)
H16A0.02320.20680.47310.043*
H16B0.11490.15950.56750.043*
C170.0798 (7)0.1425 (3)0.5481 (6)0.0313 (14)
C180.1874 (7)0.2721 (4)0.6685 (7)0.0415 (17)
H18A0.20520.28500.59230.050*
H18B0.18720.31240.71540.050*
C190.2947 (7)0.2284 (4)0.7319 (7)0.0363 (15)
H20A0.28770.03810.55810.055*
H20B0.41190.05030.66620.055*
H20C0.41870.00430.56970.055*
C200.3614 (9)0.0155 (4)0.6152 (7)0.0436 (18)
Hg10.02119 (3)0.185765 (13)0.82144 (2)0.03426 (13)
N10.1043 (6)0.1013 (3)0.9279 (6)0.0395 (14)
N20.2331 (6)0.0113 (3)0.9788 (6)0.0385 (14)
N30.1082 (6)0.2859 (3)0.8103 (6)0.0375 (13)
N40.0466 (6)0.2392 (3)0.6444 (5)0.0366 (13)
O10.1436 (5)0.2817 (3)0.9589 (5)0.0465 (13)
O20.1103 (5)0.3704 (3)1.0576 (5)0.0414 (12)
H20.19240.37331.07400.050*
O30.1763 (5)0.1700 (3)0.9062 (5)0.0412 (13)
O40.3977 (6)0.1878 (3)0.8430 (5)0.0443 (13)
O50.1373 (5)0.1400 (3)0.6322 (5)0.0380 (11)
O60.1182 (6)0.1106 (3)0.4498 (5)0.0502 (15)
O70.2823 (6)0.1763 (3)0.7841 (6)0.0443 (13)
O80.4098 (5)0.2491 (3)0.7194 (5)0.0401 (12)
H80.46040.21710.72250.048*
O90.3170 (5)0.0289 (3)0.6776 (5)0.0415 (12)
H90.24180.04080.64110.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (4)0.027 (3)0.029 (3)0.005 (3)0.000 (3)0.007 (3)
C20.041 (4)0.040 (4)0.031 (4)0.001 (3)0.004 (3)0.002 (3)
C30.041 (4)0.042 (4)0.046 (4)0.004 (3)0.015 (3)0.010 (3)
C40.029 (3)0.042 (4)0.034 (4)0.000 (3)0.001 (3)0.007 (3)
C50.042 (4)0.032 (4)0.033 (4)0.004 (3)0.000 (3)0.001 (3)
C60.027 (3)0.039 (4)0.044 (4)0.005 (3)0.001 (3)0.008 (3)
C70.038 (4)0.040 (4)0.046 (4)0.010 (3)0.007 (3)0.006 (3)
C80.034 (4)0.044 (4)0.042 (4)0.005 (3)0.014 (3)0.002 (3)
C90.032 (4)0.046 (4)0.050 (5)0.005 (3)0.016 (3)0.013 (4)
C100.038 (4)0.051 (5)0.035 (4)0.007 (3)0.013 (3)0.007 (3)
C110.039 (4)0.030 (3)0.038 (4)0.005 (3)0.014 (3)0.009 (3)
C120.040 (4)0.036 (4)0.037 (4)0.011 (3)0.013 (3)0.009 (3)
C130.034 (4)0.038 (4)0.026 (3)0.011 (3)0.011 (3)0.003 (3)
C140.037 (4)0.030 (3)0.031 (4)0.004 (3)0.005 (3)0.000 (3)
C150.045 (4)0.043 (4)0.030 (4)0.003 (3)0.015 (3)0.004 (3)
C160.036 (4)0.035 (4)0.038 (4)0.008 (3)0.013 (3)0.002 (3)
C170.031 (3)0.020 (3)0.040 (4)0.003 (3)0.004 (3)0.002 (3)
C180.041 (4)0.036 (4)0.047 (4)0.012 (3)0.011 (3)0.002 (3)
C190.031 (3)0.038 (4)0.045 (4)0.005 (3)0.018 (3)0.005 (3)
C200.062 (5)0.029 (3)0.037 (4)0.011 (3)0.008 (4)0.001 (3)
Hg10.02994 (18)0.03898 (19)0.03433 (18)0.00717 (11)0.00868 (11)0.00914 (11)
N10.033 (3)0.047 (4)0.035 (3)0.010 (3)0.001 (3)0.010 (3)
N20.035 (3)0.045 (3)0.034 (3)0.004 (3)0.005 (3)0.004 (3)
N30.044 (3)0.037 (3)0.034 (3)0.006 (3)0.014 (3)0.003 (3)
N40.032 (3)0.045 (3)0.032 (3)0.007 (3)0.007 (2)0.000 (3)
O10.036 (3)0.061 (4)0.039 (3)0.005 (3)0.001 (2)0.007 (3)
O20.028 (3)0.053 (3)0.049 (3)0.004 (2)0.020 (2)0.002 (3)
O30.042 (3)0.044 (3)0.041 (3)0.012 (2)0.017 (2)0.024 (2)
O40.033 (3)0.057 (4)0.042 (3)0.002 (2)0.008 (2)0.015 (2)
O50.031 (2)0.044 (3)0.038 (3)0.002 (2)0.006 (2)0.008 (2)
O60.050 (3)0.056 (3)0.050 (3)0.030 (3)0.023 (3)0.018 (3)
O70.039 (3)0.036 (3)0.056 (4)0.012 (2)0.009 (3)0.011 (2)
O80.029 (2)0.053 (3)0.040 (3)0.005 (2)0.012 (2)0.014 (2)
O90.044 (3)0.050 (3)0.035 (3)0.015 (2)0.018 (2)0.006 (2)
Geometric parameters (Å, º) top
C1—C61.372 (10)C13—O31.282 (9)
C1—C21.412 (11)C14—N31.481 (9)
C1—N11.417 (9)C14—C151.503 (11)
C2—C31.388 (10)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.440 (10)C15—N41.486 (10)
C3—H30.9300C15—H15A0.9700
C4—C51.361 (10)C15—H15B0.9700
C4—H40.9300C16—C171.446 (9)
C5—C61.383 (10)C16—N41.489 (9)
C5—H50.9300C16—H16A0.9700
C6—N21.389 (10)C16—H16B0.9700
C7—N11.348 (10)C17—O51.248 (9)
C7—N21.364 (10)C17—O61.271 (9)
C7—H70.9300C18—C191.456 (11)
C8—N21.498 (10)C18—N41.552 (9)
C8—C91.527 (10)C18—H18A0.9700
C8—H8A0.9700C18—H18B0.9700
C8—H8B0.9700C19—O71.224 (9)
C9—C9i1.509 (15)C19—O81.293 (8)
C9—H9A0.9700C20—O91.291 (9)
C9—H9B0.9700C20—H20A0.9822
C10—O11.148 (10)C20—H20B0.9735
C10—O21.316 (10)C20—H20C0.9611
C10—C111.536 (11)Hg1—N12.138 (6)
C11—N31.492 (10)Hg1—N42.364 (6)
C11—H11A0.9700Hg1—N32.390 (6)
C11—H11B0.9700Hg1—O32.473 (5)
C12—N31.488 (10)Hg1—O52.547 (5)
C12—C131.569 (10)Hg1—O12.604 (6)
C12—H12A0.9700O2—H20.8200
C12—H12B0.9700O8—H80.8200
C13—O41.258 (9)O9—H90.8200
C6—C1—C2124.2 (7)C17—C16—N4112.3 (6)
C6—C1—N1109.3 (6)C17—C16—H16A109.1
C2—C1—N1126.3 (6)N4—C16—H16A109.1
C3—C2—C1113.6 (7)C17—C16—H16B109.1
C3—C2—H2A123.2N4—C16—H16B109.1
C1—C2—H2A123.2H16A—C16—H16B107.9
C2—C3—C4121.8 (7)O5—C17—O6124.2 (6)
C2—C3—H3119.1O5—C17—C16122.2 (6)
C4—C3—H3119.1O6—C17—C16113.5 (6)
C5—C4—C3121.9 (7)C19—C18—N4113.2 (6)
C5—C4—H4119.1C19—C18—H18A108.9
C3—C4—H4119.1N4—C18—H18A108.9
C4—C5—C6116.7 (7)C19—C18—H18B108.9
C4—C5—H5121.6N4—C18—H18B108.9
C6—C5—H5121.6H18A—C18—H18B107.7
C1—C6—C5121.6 (7)O7—C19—O8122.2 (7)
C1—C6—N2106.0 (6)O7—C19—C18126.9 (7)
C5—C6—N2132.4 (7)O8—C19—C18110.8 (6)
N1—C7—N2110.3 (7)O9—C20—H20A111.4
N1—C7—H7124.9O9—C20—H20B111.5
N2—C7—H7124.9H20A—C20—H20B106.6
N2—C8—C9111.6 (6)O9—C20—H20C111.3
N2—C8—H8A109.3H20A—C20—H20C107.5
C9—C8—H8A109.3H20B—C20—H20C108.3
N2—C8—H8B109.3N1—Hg1—N4137.4 (2)
C9—C8—H8B109.3N1—Hg1—N3146.4 (2)
H8A—C8—H8B108.0N4—Hg1—N375.6 (2)
C9i—C9—C8113.0 (9)N1—Hg1—O385.8 (2)
C9i—C9—H9A109.0N4—Hg1—O3131.86 (19)
C8—C9—H9A109.0N3—Hg1—O368.26 (19)
C9i—C9—H9B109.0N1—Hg1—O5106.7 (2)
C8—C9—H9B109.0N4—Hg1—O567.09 (18)
H9A—C9—H9B107.8N3—Hg1—O591.30 (19)
O1—C10—O2123.9 (8)O3—Hg1—O582.73 (18)
O1—C10—C11124.8 (8)N1—Hg1—O199.7 (2)
O2—C10—C11111.3 (6)N4—Hg1—O192.9 (2)
N3—C11—C10108.2 (6)N3—Hg1—O166.2 (2)
N3—C11—H11A110.1O3—Hg1—O1100.25 (19)
C10—C11—H11A110.1O5—Hg1—O1153.57 (18)
N3—C11—H11B110.1C7—N1—C1105.6 (6)
C10—C11—H11B110.1C7—N1—Hg1122.1 (5)
H11A—C11—H11B108.4C1—N1—Hg1132.2 (5)
N3—C12—C13110.5 (6)C7—N2—C6108.5 (6)
N3—C12—H12A109.5C7—N2—C8126.6 (6)
C13—C12—H12A109.5C6—N2—C8124.9 (6)
N3—C12—H12B109.5C14—N3—C12108.5 (6)
C13—C12—H12B109.5C14—N3—C11109.0 (5)
H12A—C12—H12B108.1C12—N3—C11110.2 (6)
O4—C13—O3124.0 (7)C14—N3—Hg1109.5 (4)
O4—C13—C12117.8 (6)C12—N3—Hg1106.9 (4)
O3—C13—C12118.1 (6)C11—N3—Hg1112.6 (4)
N3—C14—C15111.8 (6)C15—N4—C16112.1 (6)
N3—C14—H14A109.2C15—N4—C18109.8 (6)
C15—C14—H14A109.2C16—N4—C18110.4 (6)
N3—C14—H14B109.2C15—N4—Hg1108.6 (4)
C15—C14—H14B109.2C16—N4—Hg1106.5 (4)
H14A—C14—H14B107.9C18—N4—Hg1109.3 (4)
N4—C15—C14112.7 (6)C10—O1—Hg1113.3 (6)
N4—C15—H15A109.1C10—O2—H2109.5
C14—C15—H15A109.1C13—O3—Hg1112.0 (4)
N4—C15—H15B109.1C17—O5—Hg1108.7 (4)
C14—C15—H15B109.1C19—O8—H8109.5
H15A—C15—H15B107.8C20—O9—H9109.5
C6—C1—C2—C31.8 (11)O5—Hg1—N3—C1476.7 (5)
N1—C1—C2—C3173.8 (7)O1—Hg1—N3—C1489.0 (5)
C1—C2—C3—C44.6 (11)N1—Hg1—N3—C1283.0 (6)
C2—C3—C4—C54.0 (12)N4—Hg1—N3—C12106.5 (4)
C3—C4—C5—C60.1 (11)O3—Hg1—N3—C1241.0 (4)
C2—C1—C6—C51.9 (11)O5—Hg1—N3—C1240.6 (4)
N1—C1—C6—C5178.2 (7)O1—Hg1—N3—C12153.7 (5)
C2—C1—C6—N2178.3 (7)N1—Hg1—N3—C1138.1 (7)
N1—C1—C6—N22.0 (8)N4—Hg1—N3—C11132.3 (5)
C4—C5—C6—C12.7 (11)O3—Hg1—N3—C1180.1 (5)
C4—C5—C6—N2177.5 (8)O5—Hg1—N3—C11161.8 (4)
N2—C8—C9—C9i67.0 (10)O1—Hg1—N3—C1132.5 (4)
O1—C10—C11—N321.5 (10)C14—C15—N4—C16159.3 (6)
O2—C10—C11—N3156.8 (6)C14—C15—N4—C1877.6 (8)
N3—C12—C13—O4168.5 (6)C14—C15—N4—Hg141.9 (7)
N3—C12—C13—O315.8 (9)C17—C16—N4—C1572.5 (8)
N3—C14—C15—N454.6 (8)C17—C16—N4—C18164.8 (6)
N4—C16—C17—O516.4 (10)C17—C16—N4—Hg146.2 (7)
N4—C16—C17—O6159.9 (6)C19—C18—N4—C15165.0 (6)
N4—C18—C19—O714.0 (12)C19—C18—N4—C1671.0 (8)
N4—C18—C19—O8161.4 (6)C19—C18—N4—Hg145.9 (7)
N2—C7—N1—C14.4 (8)N1—Hg1—N4—C15171.9 (5)
N2—C7—N1—Hg1172.8 (5)N3—Hg1—N4—C1515.9 (5)
C6—C1—N1—C71.4 (8)O3—Hg1—N4—C1526.0 (6)
C2—C1—N1—C7174.8 (7)O5—Hg1—N4—C1581.8 (5)
C6—C1—N1—Hg1175.4 (5)O1—Hg1—N4—C1580.5 (5)
C2—C1—N1—Hg18.4 (11)N1—Hg1—N4—C1651.0 (6)
N4—Hg1—N1—C712.1 (8)N3—Hg1—N4—C16136.8 (5)
N3—Hg1—N1—C7178.3 (5)O3—Hg1—N4—C1694.9 (5)
O3—Hg1—N1—C7143.1 (6)O5—Hg1—N4—C1639.1 (4)
O5—Hg1—N1—C762.0 (6)O1—Hg1—N4—C16158.6 (4)
O1—Hg1—N1—C7117.2 (6)N1—Hg1—N4—C1868.3 (6)
N4—Hg1—N1—C1164.2 (5)N3—Hg1—N4—C18103.8 (5)
N3—Hg1—N1—C12.0 (9)O3—Hg1—N4—C18145.8 (4)
O3—Hg1—N1—C140.6 (6)O5—Hg1—N4—C18158.5 (5)
O5—Hg1—N1—C1121.7 (6)O1—Hg1—N4—C1839.3 (5)
O1—Hg1—N1—C159.1 (7)O2—C10—O1—Hg1174.3 (6)
N1—C7—N2—C65.8 (9)C11—C10—O1—Hg17.6 (10)
N1—C7—N2—C8177.3 (6)N1—Hg1—O1—C10125.7 (6)
C1—C6—N2—C74.7 (8)N4—Hg1—O1—C1095.2 (6)
C5—C6—N2—C7175.6 (8)N3—Hg1—O1—C1022.3 (6)
C1—C6—N2—C8178.3 (6)O3—Hg1—O1—C1038.2 (6)
C5—C6—N2—C81.4 (13)O5—Hg1—O1—C1056.1 (8)
C9—C8—N2—C7100.6 (9)O4—C13—O3—Hg1153.3 (6)
C9—C8—N2—C682.9 (9)C12—C13—O3—Hg122.1 (8)
C15—C14—N3—C1279.7 (7)N1—Hg1—O3—C13166.5 (5)
C15—C14—N3—C11160.2 (6)N4—Hg1—O3—C139.0 (6)
C15—C14—N3—Hg136.6 (7)N3—Hg1—O3—C1335.3 (5)
C13—C12—N3—C14163.5 (6)O5—Hg1—O3—C1359.1 (5)
C13—C12—N3—C1177.1 (7)O1—Hg1—O3—C1394.4 (5)
C13—C12—N3—Hg145.5 (6)O6—C17—O5—Hg1163.8 (6)
C10—C11—N3—C1480.9 (7)C16—C17—O5—Hg120.2 (8)
C10—C11—N3—C12160.1 (6)N1—Hg1—O5—C17101.6 (5)
C10—C11—N3—Hg140.9 (6)N4—Hg1—O5—C1733.4 (4)
N1—Hg1—N3—C14159.6 (5)N3—Hg1—O5—C17107.1 (5)
N4—Hg1—N3—C1410.8 (4)O3—Hg1—O5—C17175.0 (5)
O3—Hg1—N3—C14158.4 (5)O1—Hg1—O5—C1776.6 (6)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.821.742.534 (7)164
O8—H8···O4iii0.821.842.462 (7)131
O9—H9···O6iv0.822.002.744 (7)150
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Hg2(C10H14N2O8)2(C18H18N4)]·2CH4O
Mr1336.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)10.274 (2), 19.990 (3), 11.4717 (17)
β (°) 104.035 (13)
V3)2285.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)6.79
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.21, 0.29
No. of measured, independent and
observed [I > 2σ(I)] reflections
14826, 4397, 3744
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.04
No. of reflections4397
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 1.60
Absolute structureRefinement

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Hg1—N12.138 (6)Hg1—O32.473 (5)
Hg1—N42.364 (6)Hg1—O52.547 (5)
Hg1—N32.390 (6)Hg1—O12.604 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.742.534 (7)164
O8—H8···O4ii0.821.842.462 (7)131
O9—H9···O6iii0.822.002.744 (7)150
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

X-WZ thanks Zhengzhou University of Light Industry for research facilities

References

First citationAghabozorg, H., Bagheri, S., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m1065–m1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, W.-Y. & Dong, G.-Y. (2009). Acta Cryst. E65, m217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, B., Han, H. Y., Meng, X. R., Song, Y. L. & Hou, H. W. (2004). Inorg. Chem. Commun. 7, 378–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, X. J., Yang, G. S., Cheng, L. & Wang, F. (2002). HuaxueShiji (Chin. Ed.), 22, 222–223  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds