organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(3-methyl­benzo­yl)ethyl benzoate

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Department of Biological Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 7 June 2009; accepted 9 July 2009; online 18 July 2009)

In the title mol­ecule, C23H19N3O3, the dihedral angles between the mean plane of the benzotriazole ring system and the benzene and phenyl rings are 9.67 (9) and 86.08 (10)°, respectively. The dihedral angle between the benzene and phenyl rings is 85.89 (11)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains along [010].

Related literature

For the pharmacological activities of 1H-benzotriazoles and their derivatives, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19N3O3

  • Mr = 385.41

  • Monoclinic, P 21 /c

  • a = 10.1095 (5) Å

  • b = 9.3849 (4) Å

  • c = 20.7091 (10) Å

  • β = 99.061 (4)°

  • V = 1940.29 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.991

  • 16102 measured reflections

  • 3301 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.00

  • 3301 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.97 2.42 3.062 (2) 123
C11—H11A⋯O1ii 0.93 2.60 3.375 (2) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1H-Benzotriazoles and their derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu., 2005). Herein, we present the crystal structure of the title compound (I). In (I) (Fig. 1) all bond lengths (Allen et al., 1987) and angles within normal ranges. The benzotriazole ring system is essentially planar. The dihedral angles between the mean plane of the benzotriazole ring system and rings C10—C15 and C18—C23 are 9.67 (9) and 86.08 (10)°, respectively. The dihedral angle between rings C10—C15 and C19—C23 is 85.89 (11)°. In the crystal structure weak intermolecular C—H···O hydrogen bonds link molecules into chains along [010] (see Fig. 2).

Related literature top

For the pharmacological activities of 1H-benzotriazoles and their derivatives, see: Chen & Wu (2005). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Bromine (3.2 g,0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-m-tolylpropan-1-one (5.30 g,0.02 mol) and sodium acetate (1.6 g,0.02 mol) in acetic acid (50 ml). The reaction proceeded for 8 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrou magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of benzoic acid (2.24 g,0.02 mol) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for about 6 h. The solution was then filtered and concentrated. Single crystals were obtained by slow evaporation of an acetone-ethylacetate (1:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

All H atoms were located in difference Fourier maps and were subsequently constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C) H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
2-(1H-Benzotriazol-1-yl)-1-(3-methylbenzoyl)ethyl benzoate top
Crystal data top
C23H19N3O3F(000) = 808
Mr = 385.41Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3301 reflections
a = 10.1095 (5) Åθ = 2.0–25.0°
b = 9.3849 (4) ŵ = 0.09 mm1
c = 20.7091 (10) ÅT = 298 K
β = 99.061 (4)°Block, colorless
V = 1940.29 (16) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3301 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.974, Tmax = 0.991k = 1111
16102 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.2024P]
where P = (Fo2 + 2Fc2)/3
3301 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H19N3O3V = 1940.29 (16) Å3
Mr = 385.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1095 (5) ŵ = 0.09 mm1
b = 9.3849 (4) ÅT = 298 K
c = 20.7091 (10) Å0.30 × 0.10 × 0.10 mm
β = 99.061 (4)°
Data collection top
Siemens SMART CCD
diffractometer
3301 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2071 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.051
16102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
3301 reflectionsΔρmin = 0.22 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09785 (14)0.45987 (15)0.21346 (7)0.0543 (4)
O20.17138 (13)0.14124 (15)0.23494 (7)0.0508 (4)
O30.18369 (12)0.29378 (14)0.31866 (6)0.0444 (4)
C10.0844 (2)0.2945 (3)0.51412 (11)0.0562 (6)
C20.1674 (3)0.2855 (3)0.57479 (12)0.0757 (8)
H2B0.14320.23120.60860.091*
C30.2831 (3)0.3582 (4)0.58230 (14)0.0886 (10)
H3A0.34000.35350.62220.106*
C40.3204 (3)0.4402 (3)0.53236 (16)0.0884 (9)
H4A0.40220.48760.53970.106*
C50.2409 (3)0.4538 (3)0.47244 (13)0.0677 (7)
H5A0.26540.51030.43940.081*
C60.1216 (2)0.3781 (2)0.46443 (10)0.0464 (5)
C70.0004 (2)0.4194 (2)0.34864 (9)0.0518 (6)
H7A0.05100.50660.34850.062*
H7B0.09430.44310.33580.062*
C80.04164 (19)0.3168 (2)0.29917 (9)0.0431 (5)
H8A0.00680.22650.30000.052*
C90.0140 (2)0.3818 (2)0.23043 (9)0.0402 (5)
C100.11527 (19)0.3540 (2)0.18760 (9)0.0391 (5)
C110.2093 (2)0.2566 (2)0.20324 (11)0.0521 (6)
H11A0.19220.20430.24180.062*
C120.3285 (2)0.2383 (3)0.16091 (12)0.0634 (7)
H12A0.39120.17290.17110.076*
C130.3551 (2)0.3158 (2)0.10391 (11)0.0586 (6)
H13A0.43590.30250.07620.070*
C140.2632 (2)0.4134 (2)0.08716 (10)0.0479 (5)
C150.1438 (2)0.4296 (2)0.12935 (10)0.0442 (5)
H15A0.08040.49320.11840.053*
C160.2919 (3)0.4998 (3)0.02543 (11)0.0743 (8)
H16A0.37860.47470.00220.112*
H16B0.22500.48040.00150.112*
H16C0.29050.59930.03620.112*
C170.2376 (2)0.1978 (2)0.28153 (10)0.0395 (5)
C180.38089 (19)0.1709 (2)0.30448 (9)0.0412 (5)
C190.4567 (2)0.2509 (2)0.35264 (11)0.0599 (7)
H19A0.41780.32630.37200.072*
C200.5906 (2)0.2187 (3)0.37213 (12)0.0713 (8)
H20A0.64140.27330.40440.086*
C210.6490 (2)0.1080 (3)0.34462 (12)0.0637 (7)
H21A0.73900.08710.35810.076*
C220.5745 (2)0.0282 (3)0.29719 (12)0.0604 (6)
H22A0.61400.04790.27870.072*
C230.4409 (2)0.0590 (2)0.27624 (11)0.0514 (6)
H23A0.39150.00490.24330.062*
N10.0359 (2)0.2318 (2)0.49227 (10)0.0793 (7)
N20.07420 (19)0.2723 (2)0.43222 (10)0.0730 (6)
N30.01911 (17)0.36109 (19)0.41419 (8)0.0487 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (9)0.0623 (10)0.0531 (10)0.0116 (8)0.0031 (7)0.0094 (8)
O20.0483 (9)0.0567 (9)0.0447 (9)0.0043 (7)0.0009 (7)0.0106 (8)
O30.0398 (8)0.0517 (9)0.0394 (8)0.0079 (7)0.0005 (6)0.0068 (7)
C10.0569 (15)0.0742 (17)0.0380 (14)0.0125 (13)0.0090 (12)0.0009 (12)
C20.085 (2)0.102 (2)0.0395 (15)0.0252 (18)0.0090 (14)0.0056 (14)
C30.078 (2)0.136 (3)0.0470 (18)0.021 (2)0.0036 (16)0.0203 (18)
C40.0663 (18)0.119 (3)0.076 (2)0.0130 (17)0.0001 (17)0.040 (2)
C50.0687 (17)0.0741 (17)0.0603 (17)0.0128 (14)0.0101 (14)0.0133 (14)
C60.0483 (13)0.0536 (14)0.0371 (13)0.0106 (11)0.0059 (11)0.0030 (11)
C70.0539 (14)0.0633 (15)0.0375 (13)0.0198 (11)0.0047 (11)0.0069 (11)
C80.0360 (12)0.0521 (13)0.0397 (13)0.0054 (10)0.0008 (9)0.0040 (10)
C90.0402 (12)0.0422 (12)0.0382 (12)0.0050 (10)0.0055 (10)0.0008 (10)
C100.0384 (12)0.0415 (12)0.0371 (12)0.0015 (9)0.0046 (9)0.0018 (10)
C110.0444 (13)0.0583 (14)0.0517 (14)0.0003 (11)0.0021 (11)0.0108 (11)
C120.0461 (14)0.0701 (17)0.0704 (18)0.0134 (12)0.0017 (12)0.0155 (14)
C130.0472 (14)0.0683 (16)0.0547 (15)0.0041 (12)0.0090 (11)0.0019 (13)
C140.0500 (14)0.0533 (14)0.0389 (13)0.0071 (11)0.0021 (11)0.0007 (10)
C150.0403 (12)0.0511 (14)0.0405 (13)0.0014 (10)0.0039 (10)0.0014 (10)
C160.0744 (18)0.092 (2)0.0504 (15)0.0029 (14)0.0092 (13)0.0170 (14)
C170.0450 (13)0.0398 (12)0.0332 (12)0.0006 (10)0.0045 (10)0.0024 (10)
C180.0416 (12)0.0432 (12)0.0391 (12)0.0001 (10)0.0072 (10)0.0032 (10)
C190.0476 (14)0.0673 (16)0.0611 (16)0.0089 (12)0.0033 (12)0.0190 (13)
C200.0485 (15)0.0864 (19)0.0734 (18)0.0059 (14)0.0077 (13)0.0231 (15)
C210.0421 (14)0.0818 (18)0.0669 (17)0.0119 (13)0.0079 (13)0.0018 (15)
C220.0508 (15)0.0639 (16)0.0683 (17)0.0132 (12)0.0151 (13)0.0050 (13)
C230.0490 (14)0.0518 (14)0.0538 (14)0.0006 (11)0.0094 (11)0.0057 (11)
N10.0728 (15)0.1137 (19)0.0527 (14)0.0127 (14)0.0142 (12)0.0184 (13)
N20.0516 (12)0.1129 (18)0.0558 (14)0.0102 (12)0.0118 (10)0.0085 (13)
N30.0431 (11)0.0660 (13)0.0367 (11)0.0073 (9)0.0057 (9)0.0051 (9)
Geometric parameters (Å, º) top
O1—C91.213 (2)C11—H11A0.9300
O2—C171.207 (2)C12—C131.377 (3)
O3—C171.353 (2)C12—H12A0.9300
O3—C81.445 (2)C13—C141.387 (3)
C1—N11.363 (3)C13—H13A0.9300
C1—C61.392 (3)C14—C151.382 (3)
C1—C21.399 (3)C14—C161.503 (3)
C2—C31.342 (4)C15—H15A0.9300
C2—H2B0.9300C16—H16A0.9600
C3—C41.388 (4)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C4—C51.374 (4)C17—C181.474 (3)
C4—H4A0.9300C18—C191.380 (3)
C5—C61.387 (3)C18—C231.387 (3)
C5—H5A0.9300C19—C201.384 (3)
C6—N31.357 (2)C19—H19A0.9300
C7—N31.448 (2)C20—C211.363 (3)
C7—C81.515 (3)C20—H20A0.9300
C7—H7A0.9700C21—C221.364 (3)
C7—H7B0.9700C21—H21A0.9300
C8—C91.534 (3)C22—C231.382 (3)
C8—H8A0.9800C22—H22A0.9300
C9—C101.482 (3)C23—H23A0.9300
C10—C151.390 (3)N1—N21.300 (3)
C10—C111.393 (3)N2—N31.355 (2)
C11—C121.385 (3)
C17—O3—C8114.33 (15)C11—C12—H12A119.7
N1—C1—C6109.2 (2)C12—C13—C14121.0 (2)
N1—C1—C2130.5 (2)C12—C13—H13A119.5
C6—C1—C2120.3 (2)C14—C13—H13A119.5
C3—C2—C1117.5 (3)C15—C14—C13117.8 (2)
C3—C2—H2B121.3C15—C14—C16120.7 (2)
C1—C2—H2B121.3C13—C14—C16121.4 (2)
C2—C3—C4122.0 (3)C14—C15—C10122.27 (19)
C2—C3—H3A119.0C14—C15—H15A118.9
C4—C3—H3A119.0C10—C15—H15A118.9
C5—C4—C3122.4 (3)C14—C16—H16A109.5
C5—C4—H4A118.8C14—C16—H16B109.5
C3—C4—H4A118.8H16A—C16—H16B109.5
C4—C5—C6115.8 (2)C14—C16—H16C109.5
C4—C5—H5A122.1H16A—C16—H16C109.5
C6—C5—H5A122.1H16B—C16—H16C109.5
N3—C6—C5134.1 (2)O2—C17—O3121.65 (18)
N3—C6—C1103.80 (19)O2—C17—C18125.15 (19)
C5—C6—C1122.1 (2)O3—C17—C18113.20 (17)
N3—C7—C8112.51 (16)C19—C18—C23119.12 (19)
N3—C7—H7A109.1C19—C18—C17123.06 (19)
C8—C7—H7A109.1C23—C18—C17117.82 (18)
N3—C7—H7B109.1C18—C19—C20119.9 (2)
C8—C7—H7B109.1C18—C19—H19A120.1
H7A—C7—H7B107.8C20—C19—H19A120.1
O3—C8—C7106.18 (16)C21—C20—C19120.8 (2)
O3—C8—C9110.28 (15)C21—C20—H20A119.6
C7—C8—C9110.21 (16)C19—C20—H20A119.6
O3—C8—H8A110.0C22—C21—C20119.5 (2)
C7—C8—H8A110.0C22—C21—H21A120.2
C9—C8—H8A110.0C20—C21—H21A120.2
O1—C9—C10121.57 (18)C21—C22—C23120.9 (2)
O1—C9—C8118.38 (18)C21—C22—H22A119.6
C10—C9—C8119.99 (18)C23—C22—H22A119.6
C15—C10—C11118.72 (19)C22—C23—C18119.8 (2)
C15—C10—C9118.17 (18)C22—C23—H23A120.1
C11—C10—C9123.11 (18)C18—C23—H23A120.1
C12—C11—C10119.5 (2)N2—N1—C1107.9 (2)
C12—C11—H11A120.3N1—N2—N3109.15 (19)
C10—C11—H11A120.3C6—N3—N2109.98 (17)
C13—C12—C11120.7 (2)C6—N3—C7130.49 (19)
C13—C12—H12A119.7N2—N3—C7119.52 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.423.062 (2)123
C11—H11A···O1ii0.932.603.375 (2)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H19N3O3
Mr385.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.1095 (5), 9.3849 (4), 20.7091 (10)
β (°) 99.061 (4)
V3)1940.29 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16102, 3301, 2071
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.00
No. of reflections3301
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.423.062 (2)123
C11—H11A···O1ii0.932.603.375 (2)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds