metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­({2-[(4-bromo­phen­yl)­imino­meth­yl]pyridine-κ2N,N′}­chloridomercury(II))

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran
*Correspondence e-mail: Mahmoudi_Ali@yahoo.com

(Received 11 June 2009; accepted 2 July 2009; online 11 July 2009)

The unique HgII ion in the title centrosymmetric dinuclear complex, [Hg2Cl4(C12H9BrN2)2], is in a distorted trigonal–bipyramidal coordination environment formed by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds is significantly longer than the other.

Related literature

For background information on diimine complexes, see: Dehghanpour & Mahmoudi (2007[Dehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem. 37, 35-40.]); Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.]). For related crystal structures, see: Mahmoudi et al. (2009[Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.]); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C12H9BrN2)2]

  • Mr = 1065.22

  • Monoclinic, P 21 /n

  • a = 7.6697 (2) Å

  • b = 15.0247 (4) Å

  • c = 12.2129 (4) Å

  • β = 96.738 (1)°

  • V = 1397.63 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.24 mm−1

  • T = 100 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.280, Tmax = 0.491

  • 17922 measured reflections

  • 4047 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.041

  • S = 1.01

  • 4047 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—N2 2.318 (2)
Hg1—Cl1 2.3799 (7)
Hg1—N1 2.472 (2)
Hg1—Cl2 2.4941 (7)
Hg1—Cl2i 2.8799 (6)
N2—Hg1—Cl1 129.00 (6)
N2—Hg1—N1 70.58 (7)
Cl1—Hg1—N1 107.12 (5)
N2—Hg1—Cl2 102.20 (6)
Cl1—Hg1—Cl2 128.74 (3)
N1—Hg1—Cl2 90.35 (5)
N2—Hg1—Cl2i 88.36 (6)
Cl1—Hg1—Cl2i 90.07 (2)
N1—Hg1—Cl2i 158.28 (5)
Cl2—Hg1—Cl2i 88.926 (19)
Hg1—Cl2—Hg1i 91.074 (19)
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour & Mahmoudi, 2007; Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007), we report herein the crystal structure of the title complex. The title compound was prepared by the reaction of HgCl2 with (4-bromophenyl)pyridin-2-ylmethyleneamine.

The molecluar structure of the title complex (I) is shown in (Fig. 1). The unique HgII ion in is in a distorted trigonal-bipyramidal coordination environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg-Cl bonds is significantly longer than the other.

Related literature top

For background information on diimine complexes, see: Dehghanpour & Mahmoudi (2007); Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007). For related crystal structures, see: Mahmoudi et al. (2009); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007).

Experimental top

The title complex was prepared by the reaction of HgCl2 and (4-bromophenyl)pyridin-2-ylmethyleneamine (molar ratio 1:1) in acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of (I) in 69% yield. Calc. for C12H9BrCl2HgN2: C 27.06, H 1.70, N 5.26%; found: C 27.01, H 1.72, N 5.20%.

Refinement top

The H atom were placed in calcluated positions with C-H = 0.95Å and refined in a a riding-model approximation with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure od the title complex, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius [symmetry code: (a) -x, -y+1, -z].
Di-µ-chlorido-bis({2-[(4-bromophenyl)iminomethyl]pyridine- κ2N,N'}chloridomercury(II)) top
Crystal data top
[Hg2Cl4(C12H9BrN2)2]F(000) = 976
Mr = 1065.22Dx = 2.531 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8129 reflections
a = 7.6697 (2) Åθ = 2.2–29.7°
b = 15.0247 (4) ŵ = 14.24 mm1
c = 12.2129 (4) ÅT = 100 K
β = 96.738 (1)°Prism, yellow
V = 1397.63 (7) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 30.0°, θmin = 2.2°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
k = 2120
Tmin = 0.280, Tmax = 0.491l = 1717
17922 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.015P)2 + 1.35P]
where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Hg2Cl4(C12H9BrN2)2]V = 1397.63 (7) Å3
Mr = 1065.22Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.6697 (2) ŵ = 14.24 mm1
b = 15.0247 (4) ÅT = 100 K
c = 12.2129 (4) Å0.10 × 0.10 × 0.05 mm
β = 96.738 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4047 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
3636 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.491Rint = 0.032
17922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.01Δρmax = 0.97 e Å3
4047 reflectionsΔρmin = 1.15 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.170956 (13)0.446982 (7)0.108289 (9)0.02080 (3)
Br10.86964 (5)0.10383 (2)0.01114 (3)0.04340 (9)
Cl10.42148 (9)0.53787 (4)0.15929 (7)0.03126 (16)
Cl20.04621 (9)0.39647 (4)0.07921 (5)0.02143 (12)
N10.2551 (3)0.29234 (14)0.15931 (18)0.0183 (4)
N20.0272 (3)0.38863 (15)0.21855 (18)0.0192 (4)
C10.0010 (3)0.30362 (17)0.2535 (2)0.0192 (5)
C20.1169 (4)0.26078 (18)0.3146 (2)0.0207 (5)
H2A0.09740.20060.33660.025*
C30.2618 (4)0.30668 (18)0.3433 (2)0.0219 (5)
H3A0.34200.27880.38610.026*
C40.2871 (4)0.39390 (18)0.3083 (2)0.0218 (5)
H4A0.38420.42720.32750.026*
C50.1679 (4)0.43198 (18)0.2445 (2)0.0209 (5)
H5A0.18780.49110.21840.025*
C60.1522 (4)0.25556 (18)0.2214 (2)0.0212 (5)
H6A0.17520.19650.24710.025*
C70.3966 (3)0.24488 (18)0.1221 (2)0.0194 (5)
C80.4078 (4)0.15213 (19)0.1228 (2)0.0239 (5)
H8A0.31930.11750.15080.029*
C90.5489 (4)0.1107 (2)0.0824 (2)0.0270 (6)
H9A0.55720.04760.08200.032*
C100.6778 (4)0.1622 (2)0.0425 (2)0.0260 (6)
C110.6691 (4)0.25420 (19)0.0398 (2)0.0230 (5)
H11A0.75870.28840.01220.028*
C120.5255 (3)0.29538 (18)0.0786 (2)0.0206 (5)
H12A0.51510.35840.07560.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02163 (5)0.01490 (5)0.02590 (6)0.00157 (4)0.00290 (4)0.00198 (4)
Br10.04489 (19)0.03626 (17)0.0548 (2)0.01823 (15)0.03004 (17)0.01083 (16)
Cl10.0233 (3)0.0157 (3)0.0531 (5)0.0016 (2)0.0027 (3)0.0017 (3)
Cl20.0274 (3)0.0159 (3)0.0210 (3)0.0040 (2)0.0029 (2)0.0000 (2)
N10.0210 (10)0.0147 (10)0.0187 (10)0.0018 (8)0.0009 (8)0.0002 (8)
N20.0221 (10)0.0163 (10)0.0194 (10)0.0008 (8)0.0028 (8)0.0005 (8)
C10.0227 (12)0.0171 (12)0.0179 (12)0.0002 (9)0.0025 (10)0.0003 (9)
C20.0278 (13)0.0152 (12)0.0189 (12)0.0014 (10)0.0027 (10)0.0027 (9)
C30.0248 (13)0.0226 (13)0.0188 (12)0.0017 (10)0.0043 (10)0.0028 (10)
C40.0234 (12)0.0201 (12)0.0221 (13)0.0042 (10)0.0034 (10)0.0019 (10)
C50.0256 (13)0.0170 (12)0.0203 (12)0.0028 (10)0.0030 (10)0.0031 (10)
C60.0271 (13)0.0162 (12)0.0202 (12)0.0018 (10)0.0030 (10)0.0014 (10)
C70.0201 (11)0.0202 (12)0.0175 (12)0.0025 (10)0.0004 (9)0.0005 (10)
C80.0281 (13)0.0203 (13)0.0244 (13)0.0015 (11)0.0071 (11)0.0030 (11)
C90.0365 (15)0.0199 (13)0.0258 (14)0.0089 (11)0.0086 (12)0.0027 (11)
C100.0283 (13)0.0273 (14)0.0236 (13)0.0088 (11)0.0077 (11)0.0036 (11)
C110.0231 (12)0.0252 (13)0.0209 (12)0.0008 (11)0.0038 (10)0.0014 (11)
C120.0225 (12)0.0204 (12)0.0187 (12)0.0003 (10)0.0017 (10)0.0011 (10)
Geometric parameters (Å, º) top
Hg1—N22.318 (2)C3—H3A0.9500
Hg1—Cl12.3799 (7)C4—C51.392 (4)
Hg1—N12.472 (2)C4—H4A0.9500
Hg1—Cl22.4941 (7)C5—H5A0.9500
Hg1—Cl2i2.8799 (6)C6—H6A0.9500
Br1—C101.894 (3)C7—C81.396 (4)
Cl2—Hg1i2.8799 (6)C7—C121.399 (4)
N1—C61.282 (3)C8—C91.389 (4)
N1—C71.418 (3)C8—H8A0.9500
N2—C51.330 (3)C9—C101.388 (4)
N2—C11.354 (3)C9—H9A0.9500
C1—C21.384 (4)C10—C111.385 (4)
C1—C61.471 (4)C11—C121.394 (4)
C2—C31.387 (4)C11—H11A0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.385 (4)
N2—Hg1—Cl1129.00 (6)C3—C4—H4A120.5
N2—Hg1—N170.58 (7)C5—C4—H4A120.5
Cl1—Hg1—N1107.12 (5)N2—C5—C4122.4 (2)
N2—Hg1—Cl2102.20 (6)N2—C5—H5A118.8
Cl1—Hg1—Cl2128.74 (3)C4—C5—H5A118.8
N1—Hg1—Cl290.35 (5)N1—C6—C1120.8 (2)
N2—Hg1—Cl2i88.36 (6)N1—C6—H6A119.6
Cl1—Hg1—Cl2i90.07 (2)C1—C6—H6A119.6
N1—Hg1—Cl2i158.28 (5)C8—C7—C12119.9 (2)
Cl2—Hg1—Cl2i88.926 (19)C8—C7—N1123.3 (2)
Hg1—Cl2—Hg1i91.074 (19)C12—C7—N1116.8 (2)
C6—N1—C7121.4 (2)C9—C8—C7119.7 (3)
C6—N1—Hg1113.18 (17)C9—C8—H8A120.2
C7—N1—Hg1125.39 (17)C7—C8—H8A120.2
C5—N2—C1118.8 (2)C10—C9—C8119.4 (3)
C5—N2—Hg1123.96 (18)C10—C9—H9A120.3
C1—N2—Hg1117.19 (17)C8—C9—H9A120.3
N2—C1—C2121.8 (2)C11—C10—C9122.1 (3)
N2—C1—C6118.2 (2)C11—C10—Br1119.4 (2)
C2—C1—C6119.9 (2)C9—C10—Br1118.5 (2)
C1—C2—C3119.3 (2)C10—C11—C12118.2 (3)
C1—C2—H2A120.4C10—C11—H11A120.9
C3—C2—H2A120.4C12—C11—H11A120.9
C4—C3—C2118.6 (2)C11—C12—C7120.7 (3)
C4—C3—H3A120.7C11—C12—H12A119.7
C2—C3—H3A120.7C7—C12—H12A119.7
C3—C4—C5119.0 (2)
N2—Hg1—Cl2—Hg1i88.09 (6)C6—C1—C2—C3179.4 (2)
Cl1—Hg1—Cl2—Hg1i89.22 (3)C1—C2—C3—C40.9 (4)
N1—Hg1—Cl2—Hg1i158.29 (5)C2—C3—C4—C50.8 (4)
Cl2i—Hg1—Cl2—Hg1i0.0C1—N2—C5—C41.5 (4)
N2—Hg1—N1—C60.60 (18)Hg1—N2—C5—C4178.0 (2)
Cl1—Hg1—N1—C6125.53 (18)C3—C4—C5—N22.1 (4)
Cl2—Hg1—N1—C6103.42 (18)C7—N1—C6—C1175.9 (2)
Cl2i—Hg1—N1—C615.4 (3)Hg1—N1—C6—C11.6 (3)
N2—Hg1—N1—C7176.8 (2)N2—C1—C6—N12.1 (4)
Cl1—Hg1—N1—C757.1 (2)C2—C1—C6—N1175.8 (3)
Cl2—Hg1—N1—C773.94 (19)C6—N1—C7—C818.2 (4)
Cl2i—Hg1—N1—C7161.92 (14)Hg1—N1—C7—C8159.0 (2)
Cl1—Hg1—N2—C586.3 (2)C6—N1—C7—C12164.6 (2)
N1—Hg1—N2—C5177.1 (2)Hg1—N1—C7—C1218.3 (3)
Cl2—Hg1—N2—C591.0 (2)C12—C7—C8—C91.3 (4)
Cl2i—Hg1—N2—C52.5 (2)N1—C7—C8—C9178.5 (3)
Cl1—Hg1—N2—C197.14 (19)C7—C8—C9—C100.5 (4)
N1—Hg1—N2—C10.46 (18)C8—C9—C10—C111.1 (5)
Cl2—Hg1—N2—C185.56 (18)C8—C9—C10—Br1179.6 (2)
Cl2i—Hg1—N2—C1174.10 (18)C9—C10—C11—C120.0 (4)
C5—N2—C1—C20.4 (4)Br1—C10—C11—C12179.3 (2)
Hg1—N2—C1—C2176.4 (2)C10—C11—C12—C71.8 (4)
C5—N2—C1—C6178.2 (2)C8—C7—C12—C112.5 (4)
Hg1—N2—C1—C61.4 (3)N1—C7—C12—C11179.8 (2)
N2—C1—C2—C31.6 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C12H9BrN2)2]
Mr1065.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.6697 (2), 15.0247 (4), 12.2129 (4)
β (°) 96.738 (1)
V3)1397.63 (7)
Z2
Radiation typeMo Kα
µ (mm1)14.24
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.280, 0.491
No. of measured, independent and
observed [I > 2σ(I)] reflections
17922, 4047, 3636
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.041, 1.01
No. of reflections4047
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.15

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Hg1—N22.318 (2)Hg1—Cl22.4941 (7)
Hg1—Cl12.3799 (7)Hg1—Cl2i2.8799 (6)
Hg1—N12.472 (2)
N2—Hg1—Cl1129.00 (6)N2—Hg1—Cl2i88.36 (6)
N2—Hg1—N170.58 (7)Cl1—Hg1—Cl2i90.07 (2)
Cl1—Hg1—N1107.12 (5)N1—Hg1—Cl2i158.28 (5)
N2—Hg1—Cl2102.20 (6)Cl2—Hg1—Cl2i88.926 (19)
Cl1—Hg1—Cl2128.74 (3)Hg1—Cl2—Hg1i91.074 (19)
N1—Hg1—Cl290.35 (5)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AM acknowledges the Islamic Azad University Research Council for partial support of this work.

References

First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem. 37, 35–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds