metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-[(4-bromo­phen­yl)imino­meth­yl]pyridine-κ2N,N′}zinc(II)

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
*Correspondence e-mail: Khalaj_mehdi@yahoo.com

(Received 11 June 2009; accepted 2 July 2009; online 11 July 2009)

In the title complex, [ZnBr2(C12H9BrN2)], the ZnII ion is in a distorted tetra­hedral coordination environment formed by two imine N atoms of the bis-chelating N-heterocyclic ligand and two Br atoms. The dihedral angle between the pyridine and benzene rings is 8.04 (17)°.

Related literature

For background information on diimine complexes, see: Small et al. (1998[Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049-4050.]). For the use of imino­pyridine complexes as olefin polymerization catalysts, see: Ittel et al. (2000[Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1205.]); Britovsek et al. (1999[Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., Mctavish, S. J., Redshaw, C., Solan, G. A., Stromberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728-8740.]). For related structures, see Dehghanpour & Mahmoudi (2007[Dehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem. 37, 35-40.]); Dehghanpour et al. (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H9BrN2)]

  • Mr = 486.31

  • Triclinic, [P \overline 1]

  • a = 7.7506 (13) Å

  • b = 8.7413 (16) Å

  • c = 10.9846 (18) Å

  • α = 89.966 (5)°

  • β = 72.182 (6)°

  • γ = 88.665 (6)°

  • V = 708.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.18 mm−1

  • T = 100 K

  • 0.28 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.153, Tmax = 0.293

  • 7668 measured reflections

  • 3230 independent reflections

  • 2703 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.095

  • S = 1.00

  • 3230 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 2.06 e Å−3

  • Δρmin = −1.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.062 (5)
Zn1—N2 2.094 (4)
Zn1—Br1 2.3310 (8)
Zn1—Br2 2.3507 (9)
N1—Zn1—N2 80.62 (18)
N1—Zn1—Br1 119.57 (13)
N2—Zn1—Br1 119.19 (13)
N1—Zn1—Br2 110.14 (13)
N2—Zn1—Br2 108.91 (12)
Br1—Zn1—Br2 113.95 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complexes of iminopyridines with late transition metals have recently found a renewal of interest (Small et al., 1998). The unexpected and recent discovery that such complexes in particular the imiopyridine iron(II) and cobalt (II) complexes, may act as active catalysts for olefine polymerization render them more attractive for chemists (Ittel et al., 2000; Britovsek et al., 1999). The title complex, (I), Fig. 1, was prepared by the reaction of ZnBr2 with the potentially bidentate ligand (4-bromophenyl)pyridin-2-ylmethyleneamine.

As might be expected for a four-coordinated zinc(II) complex, the metal center has a tetrahedral coordination environment. However, there are signficant distortions mainly due to the presence of the 5-membered chelate cycle: the endocyclic N1—Zn1—N2 angle [80.62 (18)°] is much narrower than the ideal tetrahedral angle of 109.5°, whereas the N1—Zn1—Br1 angle [119.57 (13)°] is much wider than the ideal tetrahedral angle. The Zn—Br and Zn—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of zinc bromide (Dehghanpour & Mahmoudi, 2007; Dehghanpour et al., 2007).

Related literature top

For background information on diimine complexes, see: Small et al. (1998). For the use of iminopyridine complexes as olefin polymerization catalysts, see: Ittel et al. (2000); Britovsek et al. (1999). For related structures, see Dehghanpour & Mahmoudi (2007); Dehghanpour et al. (2007).

Experimental top

The title complex was prepared by the reaction of ZnBr2 and (4-bromophenyl)pyridin-2-ylmethyleneamine (molar ratio 1:1) in acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave colourless crystals of (I) in 84% yield. Calc. for C12H9Br3N2Zn: C 29.64, H 1.87, N 5.76%; found: C 29.68, H 1.89, N 5.74%.

Refinement top

All hydrogen atoms were placed in geometrically calculated positions with C-H = 0.93Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) There is a high positive residual density of 2.06 e Å-3 near the atom Br2 (distance 0.88%A).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.
Dibromido{2-[(4-bromophenyl)iminomethyl]pyridine- κ2N,N'}zinc(II) top
Crystal data top
[ZnBr2(C12H9BrN2)]Z = 2
Mr = 486.31F(000) = 460
Triclinic, P1Dx = 2.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7506 (13) ÅCell parameters from 469 reflections
b = 8.7413 (16) Åθ = 2.1–21.4°
c = 10.9846 (18) ŵ = 10.18 mm1
α = 89.966 (5)°T = 100 K
β = 72.182 (6)°Prism, colourless
γ = 88.665 (6)°0.28 × 0.16 × 0.12 mm
V = 708.3 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3230 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
k = 1111
Tmin = 0.153, Tmax = 0.293l = 1414
7668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.02P)2 + 5.8P]
where P = (Fo2 + 2Fc2)/3
3230 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 2.06 e Å3
0 restraintsΔρmin = 1.70 e Å3
Crystal data top
[ZnBr2(C12H9BrN2)]γ = 88.665 (6)°
Mr = 486.31V = 708.3 (2) Å3
Triclinic, P1Z = 2
a = 7.7506 (13) ÅMo Kα radiation
b = 8.7413 (16) ŵ = 10.18 mm1
c = 10.9846 (18) ÅT = 100 K
α = 89.966 (5)°0.28 × 0.16 × 0.12 mm
β = 72.182 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3230 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2703 reflections with I > 2σ(I)
Tmin = 0.153, Tmax = 0.293Rint = 0.066
7668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 2.06 e Å3
3230 reflectionsΔρmin = 1.70 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.60716 (8)0.80440 (7)0.65671 (6)0.01457 (15)
Br10.37048 (7)0.65625 (6)0.63756 (5)0.01697 (13)
Br20.81619 (8)0.67009 (7)0.73568 (6)0.02353 (15)
Br31.15053 (7)0.69529 (6)0.03171 (5)0.01971 (14)
N10.5509 (6)1.0180 (5)0.7411 (4)0.0161 (9)
N20.7495 (6)0.9383 (5)0.5020 (4)0.0135 (9)
C10.6485 (7)1.1285 (6)0.6650 (5)0.0142 (10)
C20.6414 (7)1.2794 (6)0.7039 (5)0.0175 (11)
H20.71161.35220.65050.021*
C30.5270 (8)1.3201 (7)0.8248 (5)0.0193 (11)
H30.51811.42120.85300.023*
C40.4275 (7)1.2091 (7)0.9018 (6)0.0205 (12)
H40.35101.23390.98300.025*
C50.4428 (7)1.0584 (7)0.8567 (5)0.0188 (11)
H50.37520.98360.90930.023*
C60.7597 (7)1.0777 (6)0.5374 (5)0.0154 (10)
H60.83691.14520.48240.018*
C70.8461 (7)0.8856 (6)0.3766 (5)0.0150 (10)
C80.9339 (7)0.9837 (7)0.2784 (5)0.0181 (11)
H80.93091.08840.29410.022*
C91.0255 (7)0.9271 (6)0.1580 (5)0.0164 (11)
H91.08580.99290.09310.020*
C101.0264 (7)0.7708 (6)0.1348 (5)0.0156 (11)
C110.9348 (7)0.6706 (6)0.2296 (5)0.0173 (11)
H110.93360.56660.21250.021*
C120.8446 (7)0.7298 (6)0.3514 (5)0.0171 (11)
H120.78290.66440.41600.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0158 (3)0.0090 (3)0.0168 (3)0.0017 (2)0.0018 (2)0.0003 (2)
Br10.0164 (3)0.0128 (3)0.0203 (3)0.00344 (19)0.0032 (2)0.0010 (2)
Br20.0240 (3)0.0125 (3)0.0378 (4)0.0022 (2)0.0148 (2)0.0031 (2)
Br30.0235 (3)0.0160 (3)0.0157 (3)0.0026 (2)0.0000 (2)0.0042 (2)
N10.016 (2)0.013 (2)0.018 (2)0.0013 (17)0.0022 (17)0.0008 (18)
N20.014 (2)0.010 (2)0.015 (2)0.0001 (16)0.0027 (17)0.0004 (17)
C10.014 (2)0.009 (2)0.020 (3)0.0001 (19)0.006 (2)0.001 (2)
C20.019 (3)0.011 (3)0.023 (3)0.000 (2)0.007 (2)0.001 (2)
C30.027 (3)0.011 (3)0.020 (3)0.000 (2)0.007 (2)0.006 (2)
C40.019 (3)0.022 (3)0.018 (3)0.001 (2)0.002 (2)0.008 (2)
C50.017 (3)0.017 (3)0.019 (3)0.001 (2)0.000 (2)0.000 (2)
C60.014 (2)0.014 (3)0.017 (3)0.001 (2)0.004 (2)0.000 (2)
C70.012 (2)0.015 (3)0.017 (3)0.0015 (19)0.0029 (19)0.001 (2)
C80.019 (3)0.014 (3)0.018 (3)0.004 (2)0.000 (2)0.002 (2)
C90.021 (3)0.011 (3)0.015 (3)0.004 (2)0.002 (2)0.002 (2)
C100.016 (2)0.016 (3)0.012 (2)0.000 (2)0.0002 (19)0.003 (2)
C110.019 (3)0.010 (3)0.023 (3)0.001 (2)0.005 (2)0.001 (2)
C120.021 (3)0.014 (3)0.013 (2)0.005 (2)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Zn1—N12.062 (5)C4—C51.397 (8)
Zn1—N22.094 (4)C4—H40.9300
Zn1—Br12.3310 (8)C5—H50.9300
Zn1—Br22.3507 (9)C6—H60.9300
Br3—C101.898 (5)C7—C121.391 (8)
N1—C51.333 (7)C7—C81.392 (8)
N1—C11.361 (7)C8—C91.382 (7)
N2—C61.291 (7)C8—H80.9300
N2—C71.422 (7)C9—C101.389 (8)
C1—C21.381 (7)C9—H90.9300
C1—C61.466 (8)C10—C111.389 (8)
C2—C31.394 (8)C11—C121.399 (8)
C2—H20.9300C11—H110.9300
C3—C41.374 (8)C12—H120.9300
C3—H30.9300
N1—Zn1—N280.62 (18)N1—C5—C4122.3 (5)
N1—Zn1—Br1119.57 (13)N1—C5—H5118.9
N2—Zn1—Br1119.19 (13)C4—C5—H5118.9
N1—Zn1—Br2110.14 (13)N2—C6—C1119.3 (5)
N2—Zn1—Br2108.91 (12)N2—C6—H6120.3
Br1—Zn1—Br2113.95 (3)C1—C6—H6120.3
C5—N1—C1118.2 (5)C12—C7—C8119.4 (5)
C5—N1—Zn1129.7 (4)C12—C7—N2117.7 (5)
C1—N1—Zn1112.0 (3)C8—C7—N2122.8 (5)
C6—N2—C7121.6 (5)C9—C8—C7120.7 (5)
C6—N2—Zn1111.2 (4)C9—C8—H8119.6
C7—N2—Zn1126.7 (4)C7—C8—H8119.6
N1—C1—C2122.5 (5)C8—C9—C10119.2 (5)
N1—C1—C6115.5 (5)C8—C9—H9120.4
C2—C1—C6121.9 (5)C10—C9—H9120.4
C1—C2—C3118.6 (5)C9—C10—C11121.4 (5)
C1—C2—H2120.7C9—C10—Br3118.7 (4)
C3—C2—H2120.7C11—C10—Br3119.9 (4)
C4—C3—C2119.1 (5)C10—C11—C12118.5 (5)
C4—C3—H3120.4C10—C11—H11120.7
C2—C3—H3120.4C12—C11—H11120.7
C3—C4—C5119.2 (5)C7—C12—C11120.6 (5)
C3—C4—H4120.4C7—C12—H12119.7
C5—C4—H4120.4C11—C12—H12119.7
N2—Zn1—N1—C5175.0 (5)Zn1—N1—C5—C4176.4 (4)
Br1—Zn1—N1—C556.7 (5)C3—C4—C5—N10.0 (9)
Br2—Zn1—N1—C578.2 (5)C7—N2—C6—C1176.2 (5)
N2—Zn1—N1—C18.2 (4)Zn1—N2—C6—C111.5 (6)
Br1—Zn1—N1—C1126.5 (3)N1—C1—C6—N24.8 (7)
Br2—Zn1—N1—C198.6 (4)C2—C1—C6—N2174.1 (5)
N1—Zn1—N2—C610.6 (4)C6—N2—C7—C12172.5 (5)
Br1—Zn1—N2—C6129.4 (3)Zn1—N2—C7—C121.4 (7)
Br2—Zn1—N2—C697.6 (4)C6—N2—C7—C810.4 (8)
N1—Zn1—N2—C7177.5 (4)Zn1—N2—C7—C8178.5 (4)
Br1—Zn1—N2—C758.8 (4)C12—C7—C8—C92.7 (8)
Br2—Zn1—N2—C774.3 (4)N2—C7—C8—C9179.7 (5)
C5—N1—C1—C20.9 (8)C7—C8—C9—C101.2 (8)
Zn1—N1—C1—C2176.3 (4)C8—C9—C10—C111.0 (8)
C5—N1—C1—C6177.9 (5)C8—C9—C10—Br3179.3 (4)
Zn1—N1—C1—C64.8 (6)C9—C10—C11—C121.7 (8)
N1—C1—C2—C31.3 (8)Br3—C10—C11—C12180.0 (4)
C6—C1—C2—C3177.5 (5)C8—C7—C12—C111.9 (8)
C1—C2—C3—C41.0 (8)N2—C7—C12—C11179.2 (5)
C2—C3—C4—C50.4 (9)C10—C11—C12—C70.2 (8)
C1—N1—C5—C40.2 (8)

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H9BrN2)]
Mr486.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7506 (13), 8.7413 (16), 10.9846 (18)
α, β, γ (°)89.966 (5), 72.182 (6), 88.665 (6)
V3)708.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)10.18
Crystal size (mm)0.28 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.153, 0.293
No. of measured, independent and
observed [I > 2σ(I)] reflections
7668, 3230, 2703
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.095, 1.00
No. of reflections3230
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.06, 1.70

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N12.062 (5)Zn1—Br12.3310 (8)
Zn1—N22.094 (4)Zn1—Br22.3507 (9)
N1—Zn1—N280.62 (18)N1—Zn1—Br2110.14 (13)
N1—Zn1—Br1119.57 (13)N2—Zn1—Br2108.91 (12)
N2—Zn1—Br1119.19 (13)Br1—Zn1—Br2113.95 (3)
 

Acknowledgements

MK acknowledges the Islamic Azad University Research Council for partial support of this work.

References

First citationBritovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., Mctavish, S. J., Redshaw, C., Solan, G. A., Stromberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem. 37, 35–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIttel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049–4050.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds