metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­chloridobis(quinolin-8-olato)tin(IV)

aDepartment of Pharmacy, Jining Medical College, No. 669 Xueyuan Road, Rizhao, Shandong 276826, People's Republic of China
*Correspondence e-mail: qibaowang@mail.jnmc.edu.cn

(Received 12 June 2009; accepted 3 July 2009; online 11 July 2009)

In the title compound, [Sn(C7H7)(C9H6NO)2Cl], the SnIV ion is in a distorted octa­hedral coordination environment formed by the O and N atoms of two bis-chelating quinolin-8-olate ligands, a Cl atom and a C atom from a benzyl ligand. The axial sites are occupied by an N atom of a quinolinate ligand and the C atom of the benzyl ligand. The axial Sn—N bond is slightly shorter than the equatorial Sn—N bond.

Related literature

For the chemical, biological and pharmaceutical properties of organotin(IV) complexes, see: Nath et al. (2001[Nath, Y., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Pellerito & Nagy (2002[Pellerito, L. L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]). For diorganotin complexes, see: Szorcsik et al. (2005[Szorcsik, A., Nagy, L., Scopelliti, M., Deàk, A., Pellerito, L. & Hegetschweiler, K. (2005). J. Organomet. Chem. 690, 2243-2253.]). For a related structure, see: Kellö et al. (1995[Kellö, E., Vrábel, V., Holeček, J. & Sivý, J. (1995). J. Organomet. Chem. 493, 13-16.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H7)(C9H6NO)2Cl]

  • Mr = 533.56

  • Monoclinic, P 21 /n

  • a = 11.6283 (14) Å

  • b = 10.6290 (14) Å

  • c = 17.948 (2) Å

  • β = 94.296 (2)°

  • V = 2212.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 273 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.860

  • 14242 measured reflections

  • 5410 independent reflections

  • 3930 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.076

  • S = 1.02

  • 5410 reflections

  • 281 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.067 (2)
Sn1—O2 2.074 (2)
Sn1—C19 2.148 (3)
Sn1—N2 2.239 (2)
Sn1—N1 2.252 (2)
Sn1—Cl1 2.4310 (9)
O1—Sn1—O2 154.94 (8)
O1—Sn1—C19 103.86 (12)
O2—Sn1—C19 95.81 (12)
O1—Sn1—N2 85.26 (8)
O2—Sn1—N2 75.96 (8)
C19—Sn1—N2 170.69 (12)
O1—Sn1—N1 76.53 (8)
O2—Sn1—N1 85.38 (8)
C19—Sn1—N1 98.59 (11)
N2—Sn1—N1 85.23 (8)
O1—Sn1—Cl1 91.98 (6)
O2—Sn1—Cl1 102.40 (6)
C19—Sn1—Cl1 93.21 (9)
N2—Sn1—Cl1 84.48 (6)
N1—Sn1—Cl1 165.16 (6)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemical, biological and pharmaceutical properties of organotin(IV) complexes have been extensively studied owing to their anti-tumor activity( Pellerito & Nagy, 2002; Nath et al., 2001). Organotin(IV) complexes with ligands containing phenolic –OH or phenolic –OH and –COOH groups and an aromatic N donor atom comprise an interesting class of such complexes. The studies are manily focused on diorganotin complexes (Szorcsik et al., 2005) and up until now few publications have been reported on mono-organotin complexes of this type, In this paper, we reported the structure of the title mono-organotin complex. The title compound was synthesized by the reaction of sodium quinolin-8-olate with dibenzyltin dichlorides in dichloromethane. In the title compound, the coordination geometry around the SnIV ion is distorted octahedral; two O atoms, a N atom of the cis-chelated 8-quinolinate ligands, and a chlorine atom are in equatorial sites. The axial sites are occupied by the N atom of the other cis-chelate 8-quinolinate group and the C atom of the benzyl group. The two Sn—O distances are the same within experimental error but the axial Sn—N bond is slightly shorter than the equatorial Sn—N bond. The Sn—Cl and Sn—C distances are similar to those in butylchlorobis(8-quinolinate)tin(IV) (Kellö et al., 1995).

Related literature top

For the chemical, biological and pharmaceutical properties of organotin(IV) complexes, see: Nath et al. (2001); Pellerito & Nagy (2002). For diorganotin complexes, see: Szorcsik et al. (2005). For a related structure, see: Kellö et al. (1995).

Experimental top

The mixture of sodium quinolin-8-olate (0.334 g, 2.0 mmol) and dibenzyltin dichlorides (0.372 g, 1.0 mmol) was suspended in 30 ml dichloromethane at room temperature for 24 h, then the sovents were removed on a rotary evaporator, the residue was recrystallized in dichloromethane-hexane (3:1) to give yellow crystals 0.437 g. Yield 82%.

Refinement top

H atoms were positioned geometrically and refined using a riding-model approximation with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C). The anisotropic displacement parameters of the C atoms in the benzyl group are larger than normal but were not considered severe enough to model as disorder.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability for non-H atoms.
Benzylchloridobis(quinolin-8-olato)tin(IV) top
Crystal data top
[Sn(C7H7)(C9H6NO)2Cl]F(000) = 1064
Mr = 533.56Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3464 reflections
a = 11.6283 (14) Åθ = 2.2–24.1°
b = 10.6290 (14) ŵ = 1.30 mm1
c = 17.948 (2) ÅT = 273 K
β = 94.296 (2)°Block, yellow
V = 2212.1 (5) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5410 independent reflections
Radiation source: fine-focus sealed tube3930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1415
Tmin = 0.781, Tmax = 0.860k = 149
14242 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
5410 reflectionsΔρmax = 0.43 e Å3
281 parametersΔρmin = 0.39 e Å3
48 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00054 (14)
Crystal data top
[Sn(C7H7)(C9H6NO)2Cl]V = 2212.1 (5) Å3
Mr = 533.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6283 (14) ŵ = 1.30 mm1
b = 10.6290 (14) ÅT = 273 K
c = 17.948 (2) Å0.20 × 0.15 × 0.12 mm
β = 94.296 (2)°
Data collection top
Bruker APEXII
diffractometer
5410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3930 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.860Rint = 0.038
14242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03548 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
5410 reflectionsΔρmin = 0.39 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.695432 (15)0.868135 (18)0.124643 (11)0.03912 (8)
Cl10.65912 (7)1.09309 (8)0.12976 (5)0.0555 (2)
N10.69034 (19)0.6613 (2)0.09745 (13)0.0384 (5)
N20.50410 (19)0.8508 (2)0.12869 (13)0.0376 (5)
O10.66194 (18)0.86474 (18)0.00990 (11)0.0476 (5)
O20.67424 (16)0.8119 (2)0.23340 (10)0.0457 (5)
C10.7089 (2)0.5632 (3)0.14258 (17)0.0436 (7)
H10.72840.57710.19310.052*
C20.7000 (2)0.4408 (3)0.11637 (18)0.0529 (8)
H20.71390.37340.14890.064*
C30.6711 (3)0.4201 (3)0.04313 (19)0.0544 (8)
H30.66460.33780.02560.065*
C40.6504 (2)0.5201 (3)0.00712 (17)0.0441 (7)
C50.6201 (3)0.5090 (4)0.08445 (19)0.0595 (9)
H50.61230.43000.10660.071*
C60.6023 (3)0.6147 (4)0.12630 (19)0.0626 (10)
H60.58140.60650.17710.075*
C70.6145 (3)0.7350 (4)0.09581 (17)0.0537 (8)
H70.60030.80480.12640.064*
C80.6468 (2)0.7521 (3)0.02160 (16)0.0419 (7)
C90.6630 (2)0.6424 (3)0.02335 (15)0.0374 (6)
C100.4226 (2)0.8810 (3)0.07682 (17)0.0454 (7)
H100.44330.91290.03150.055*
C110.3059 (3)0.8664 (3)0.0881 (2)0.0553 (9)
H110.24980.89140.05150.066*
C120.2751 (3)0.8152 (3)0.1531 (2)0.0587 (9)
H120.19750.80360.16060.070*
C130.3607 (2)0.7794 (3)0.20950 (18)0.0479 (7)
C140.3386 (3)0.7245 (4)0.2775 (2)0.0685 (10)
H140.26340.70560.28790.082*
C150.4281 (4)0.6989 (4)0.3284 (2)0.0752 (11)
H150.41260.66140.37340.090*
C160.5433 (3)0.7270 (3)0.31570 (18)0.0595 (9)
H160.60210.70950.35220.071*
C170.5684 (2)0.7800 (3)0.24933 (16)0.0428 (7)
C180.4754 (2)0.8027 (3)0.19468 (16)0.0388 (6)
C190.8792 (2)0.8914 (3)0.1398 (2)0.0616 (10)
H19A0.90220.95340.10420.074*
H19B0.89830.92490.18940.074*
C200.9480 (2)0.7754 (3)0.13088 (17)0.0453 (7)
C210.9725 (3)0.6970 (4)0.1901 (2)0.0668 (10)
H210.94680.71710.23640.080*
C221.0347 (4)0.5888 (5)0.1821 (4)0.115 (2)
H221.05190.53670.22310.138*
C231.0711 (5)0.5578 (6)0.1143 (5)0.141 (3)
H231.11220.48380.10860.170*
C241.0482 (4)0.6336 (6)0.0557 (4)0.118 (2)
H241.07420.61260.00960.142*
C250.9858 (3)0.7432 (4)0.0632 (2)0.0732 (11)
H250.96970.79510.02210.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03405 (11)0.03303 (12)0.04976 (14)0.00005 (9)0.00043 (8)0.00080 (9)
Cl10.0532 (4)0.0332 (4)0.0790 (6)0.0005 (3)0.0019 (4)0.0058 (4)
N10.0368 (12)0.0351 (14)0.0427 (13)0.0014 (10)0.0021 (10)0.0002 (11)
N20.0352 (12)0.0321 (13)0.0449 (13)0.0018 (10)0.0021 (10)0.0019 (11)
O10.0589 (13)0.0367 (12)0.0478 (12)0.0030 (10)0.0069 (10)0.0074 (10)
O20.0413 (11)0.0489 (13)0.0454 (11)0.0001 (10)0.0066 (9)0.0001 (10)
C10.0415 (16)0.0403 (18)0.0482 (17)0.0036 (14)0.0016 (13)0.0021 (14)
C20.0550 (19)0.0406 (18)0.062 (2)0.0063 (15)0.0037 (16)0.0055 (16)
C30.0527 (18)0.0365 (18)0.073 (2)0.0043 (15)0.0001 (17)0.0106 (17)
C40.0350 (14)0.0447 (18)0.0523 (18)0.0044 (13)0.0012 (13)0.0083 (15)
C50.059 (2)0.057 (2)0.062 (2)0.0075 (17)0.0002 (17)0.0210 (18)
C60.062 (2)0.084 (3)0.0419 (17)0.013 (2)0.0022 (15)0.0081 (19)
C70.056 (2)0.061 (2)0.0444 (18)0.0119 (17)0.0076 (15)0.0053 (17)
C80.0364 (15)0.0445 (19)0.0461 (17)0.0055 (13)0.0109 (13)0.0015 (14)
C90.0315 (13)0.0369 (16)0.0440 (16)0.0036 (12)0.0042 (12)0.0011 (13)
C100.0404 (15)0.0417 (18)0.0526 (18)0.0022 (13)0.0063 (13)0.0058 (14)
C110.0379 (16)0.056 (2)0.070 (2)0.0025 (15)0.0126 (15)0.0040 (18)
C120.0385 (17)0.058 (2)0.080 (2)0.0019 (16)0.0044 (17)0.0098 (19)
C130.0395 (16)0.0464 (19)0.0586 (19)0.0030 (14)0.0090 (14)0.0059 (16)
C140.060 (2)0.081 (3)0.066 (2)0.011 (2)0.0183 (19)0.001 (2)
C150.088 (3)0.085 (3)0.056 (2)0.009 (2)0.024 (2)0.013 (2)
C160.066 (2)0.065 (2)0.0467 (19)0.0048 (18)0.0019 (17)0.0064 (18)
C170.0430 (17)0.0391 (17)0.0462 (17)0.0024 (13)0.0022 (13)0.0048 (14)
C180.0417 (15)0.0298 (16)0.0450 (17)0.0017 (12)0.0042 (13)0.0062 (13)
C190.0335 (16)0.050 (2)0.101 (3)0.0059 (15)0.0019 (17)0.0011 (19)
C200.0289 (14)0.0435 (18)0.063 (2)0.0024 (13)0.0001 (14)0.0020 (16)
C210.0453 (19)0.068 (3)0.086 (3)0.0144 (17)0.0035 (18)0.019 (2)
C220.060 (3)0.063 (3)0.215 (6)0.011 (2)0.030 (3)0.053 (4)
C230.060 (3)0.058 (3)0.304 (9)0.005 (3)0.001 (5)0.045 (4)
C240.061 (3)0.130 (5)0.167 (5)0.014 (3)0.034 (3)0.089 (4)
C250.050 (2)0.101 (3)0.069 (2)0.007 (2)0.0030 (18)0.015 (2)
Geometric parameters (Å, º) top
Sn1—O12.067 (2)C10—H100.9300
Sn1—O22.074 (2)C11—C121.359 (5)
Sn1—C192.148 (3)C11—H110.9300
Sn1—N22.239 (2)C12—C131.418 (4)
Sn1—N12.252 (2)C12—H120.9300
Sn1—Cl12.4310 (9)C13—C141.393 (4)
N1—C11.328 (4)C13—C181.401 (4)
N1—C91.359 (3)C14—C151.360 (5)
N2—C101.318 (3)C14—H140.9300
N2—C181.355 (3)C15—C161.408 (5)
O1—C81.330 (3)C15—H150.9300
O2—C171.328 (3)C16—C171.369 (4)
C1—C21.385 (4)C16—H160.9300
C1—H10.9300C17—C181.425 (4)
C2—C31.350 (4)C19—C201.485 (4)
C2—H20.9300C19—H19A0.9700
C3—C41.403 (4)C19—H19B0.9700
C3—H30.9300C20—C211.364 (4)
C4—C51.411 (4)C20—C251.366 (4)
C4—C91.414 (4)C21—C221.371 (6)
C5—C61.359 (5)C21—H210.9300
C5—H50.9300C22—C231.359 (8)
C6—C71.394 (5)C22—H220.9300
C6—H60.9300C23—C241.335 (9)
C7—C81.369 (4)C23—H230.9300
C7—H70.9300C24—C251.384 (7)
C8—C91.422 (4)C24—H240.9300
C10—C111.395 (4)C25—H250.9300
O1—Sn1—O2154.94 (8)N2—C10—H10119.1
O1—Sn1—C19103.86 (12)C11—C10—H10119.1
O2—Sn1—C1995.81 (12)C12—C11—C10119.4 (3)
O1—Sn1—N285.26 (8)C12—C11—H11120.3
O2—Sn1—N275.96 (8)C10—C11—H11120.3
C19—Sn1—N2170.69 (12)C11—C12—C13120.3 (3)
O1—Sn1—N176.53 (8)C11—C12—H12119.9
O2—Sn1—N185.38 (8)C13—C12—H12119.9
C19—Sn1—N198.59 (11)C14—C13—C18118.7 (3)
N2—Sn1—N185.23 (8)C14—C13—C12124.9 (3)
O1—Sn1—Cl191.98 (6)C18—C13—C12116.4 (3)
O2—Sn1—Cl1102.40 (6)C15—C14—C13119.4 (3)
C19—Sn1—Cl193.21 (9)C15—C14—H14120.3
N2—Sn1—Cl184.48 (6)C13—C14—H14120.3
N1—Sn1—Cl1165.16 (6)C14—C15—C16122.6 (3)
C1—N1—C9119.8 (3)C14—C15—H15118.7
C1—N1—Sn1129.3 (2)C16—C15—H15118.7
C9—N1—Sn1110.89 (18)C17—C16—C15119.7 (3)
C10—N2—C18119.9 (2)C17—C16—H16120.1
C10—N2—Sn1128.4 (2)C15—C16—H16120.1
C18—N2—Sn1111.70 (17)O2—C17—C16123.6 (3)
C8—O1—Sn1116.63 (18)O2—C17—C18118.4 (3)
C17—O2—Sn1116.97 (17)C16—C17—C18117.9 (3)
N1—C1—C2121.7 (3)N2—C18—C13122.2 (3)
N1—C1—H1119.1N2—C18—C17116.2 (2)
C2—C1—H1119.1C13—C18—C17121.6 (3)
C3—C2—C1119.4 (3)C20—C19—Sn1115.5 (2)
C3—C2—H2120.3C20—C19—H19A108.4
C1—C2—H2120.3Sn1—C19—H19A108.4
C2—C3—C4121.4 (3)C20—C19—H19B108.4
C2—C3—H3119.3Sn1—C19—H19B108.4
C4—C3—H3119.3H19A—C19—H19B107.5
C3—C4—C5125.9 (3)C21—C20—C25118.5 (4)
C3—C4—C9116.1 (3)C21—C20—C19120.4 (3)
C5—C4—C9117.9 (3)C25—C20—C19121.1 (3)
C6—C5—C4119.4 (3)C20—C21—C22120.8 (4)
C6—C5—H5120.3C20—C21—H21119.6
C4—C5—H5120.3C22—C21—H21119.6
C5—C6—C7122.3 (3)C23—C22—C21119.9 (6)
C5—C6—H6118.8C23—C22—H22120.0
C7—C6—H6118.8C21—C22—H22120.0
C8—C7—C6121.1 (3)C24—C23—C22120.1 (6)
C8—C7—H7119.5C24—C23—H23120.0
C6—C7—H7119.5C22—C23—H23120.0
O1—C8—C7123.5 (3)C23—C24—C25120.4 (6)
O1—C8—C9119.3 (3)C23—C24—H24119.8
C7—C8—C9117.3 (3)C25—C24—H24119.8
N1—C9—C4121.6 (3)C20—C25—C24120.2 (5)
N1—C9—C8116.4 (3)C20—C25—H25119.9
C4—C9—C8121.9 (3)C24—C25—H25119.9
N2—C10—C11121.7 (3)

Experimental details

Crystal data
Chemical formula[Sn(C7H7)(C9H6NO)2Cl]
Mr533.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)11.6283 (14), 10.6290 (14), 17.948 (2)
β (°) 94.296 (2)
V3)2212.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.781, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
14242, 5410, 3930
Rint0.038
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.02
No. of reflections5410
No. of parameters281
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—O12.067 (2)Sn1—N22.239 (2)
Sn1—O22.074 (2)Sn1—N12.252 (2)
Sn1—C192.148 (3)Sn1—Cl12.4310 (9)
O1—Sn1—O2154.94 (8)C19—Sn1—N198.59 (11)
O1—Sn1—C19103.86 (12)N2—Sn1—N185.23 (8)
O2—Sn1—C1995.81 (12)O1—Sn1—Cl191.98 (6)
O1—Sn1—N285.26 (8)O2—Sn1—Cl1102.40 (6)
O2—Sn1—N275.96 (8)C19—Sn1—Cl193.21 (9)
C19—Sn1—N2170.69 (12)N2—Sn1—Cl184.48 (6)
O1—Sn1—N176.53 (8)N1—Sn1—Cl1165.16 (6)
O2—Sn1—N185.38 (8)
 

Acknowledgements

This work was supported by the S&R Project–Starting Off Funds of JMC.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKellö, E., Vrábel, V., Holeček, J. & Sivý, J. (1995). J. Organomet. Chem. 493, 13–16.  CSD CrossRef Web of Science Google Scholar
First citationNath, Y., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationPellerito, L. L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzorcsik, A., Nagy, L., Scopelliti, M., Deàk, A., Pellerito, L. & Hegetschweiler, K. (2005). J. Organomet. Chem. 690, 2243–2253.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds