metal-organic compounds
Dichlorido(2,9-diethoxy-1,10-phenanthroline-κ2N,N′)zinc(II)
aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn
All non-H atoms except for the Cl atoms lie on a mirror plane in the title complex, [ZnCl2(C16H16N2O2)]. The ZnII ion is coordinated by two N atoms from a bis-chelating 2,9-diethoxy-1,10-phenanthroline ligand and two symmetry-related Cl atoms in a distorted tetrahedral environment. The two Zn—N bond lengths are significantly different from each other and the N—Zn—N angle is acute. In the there are weak but significant π–π stacking interactions between phenanthroline rings, with a centroid–centroid distance of 3.764 (1) Å.
Related literature
For background information, see: Majumder et al. (2006); Bie et al. (2006). For synthetic details, see: Pijper et al. (1984).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809024490/lh2850sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024490/lh2850Isup2.hkl
The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol) and zinc dichloride (0.014 g, 0.1 mmol) in 30 ml me thanol afforded suitable colourless block crystals in about 7 days (yield 60%).
Carbon-bound H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms;]. The final difference Fourier map had a highest peak at 1.17 Å from atom Zn1 and a deepest hole at 1.04 Å from atom Zn1.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[ZnCl2(C16H16N2O2)] | F(000) = 824 |
Mr = 404.58 | Dx = 1.524 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 398 reflections |
a = 13.255 (3) Å | θ = 2–25.1° |
b = 7.4403 (15) Å | µ = 1.71 mm−1 |
c = 17.874 (4) Å | T = 291 K |
V = 1762.7 (6) Å3 | Prismatic, colorless |
Z = 4 | 0.20 × 0.18 × 0.17 mm |
Bruker APEX-II CCD detector diffractometer | 1741 independent reflections |
Radiation source: fine-focus sealed tube | 1303 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 0 pixels mm-1 | θmax = 25.5°, θmin = 1.9° |
Oscillation frames scans | h = −16→0 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −8→8 |
Tmin = 0.727, Tmax = 0.760 | l = −21→21 |
5148 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3 |
1741 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[ZnCl2(C16H16N2O2)] | V = 1762.7 (6) Å3 |
Mr = 404.58 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 13.255 (3) Å | µ = 1.71 mm−1 |
b = 7.4403 (15) Å | T = 291 K |
c = 17.874 (4) Å | 0.20 × 0.18 × 0.17 mm |
Bruker APEX-II CCD detector diffractometer | 1741 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1303 reflections with I > 2σ(I) |
Tmin = 0.727, Tmax = 0.760 | Rint = 0.052 |
5148 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.34 e Å−3 |
1741 reflections | Δρmin = −0.58 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | −0.76441 (4) | 0.2500 | 0.40645 (3) | 0.03224 (18) | |
Cl1 | −0.72431 (7) | −0.00599 (12) | 0.35222 (5) | 0.0513 (3) | |
O1 | −0.9753 (2) | 0.2500 | 0.33493 (19) | 0.0549 (10) | |
O2 | −0.5679 (2) | 0.2500 | 0.51182 (18) | 0.0441 (9) | |
N1 | −0.9098 (2) | 0.2500 | 0.4479 (2) | 0.0326 (9) | |
N2 | −0.7355 (2) | 0.2500 | 0.5230 (2) | 0.0330 (9) | |
C1 | −0.9938 (3) | 0.2500 | 0.4084 (3) | 0.0409 (12) | |
C2 | −1.0897 (3) | 0.2500 | 0.4426 (3) | 0.0464 (14) | |
H2A | −1.1480 | 0.2500 | 0.4136 | 0.056* | |
C3 | −1.0957 (4) | 0.2500 | 0.5183 (3) | 0.0512 (15) | |
H3A | −1.1585 | 0.2500 | 0.5415 | 0.061* | |
C4 | −1.0068 (4) | 0.2500 | 0.5625 (3) | 0.0425 (13) | |
C5 | −0.9155 (3) | 0.2500 | 0.5242 (3) | 0.0325 (11) | |
C6 | −0.8217 (3) | 0.2500 | 0.5640 (3) | 0.0327 (11) | |
C7 | −0.8228 (4) | 0.2500 | 0.6423 (3) | 0.0411 (12) | |
C8 | −0.7279 (4) | 0.2500 | 0.6775 (3) | 0.0530 (14) | |
H8A | −0.7244 | 0.2500 | 0.7295 | 0.064* | |
C9 | −0.6412 (4) | 0.2500 | 0.6367 (3) | 0.0489 (15) | |
H9A | −0.5787 | 0.2500 | 0.6604 | 0.059* | |
C10 | −0.6474 (3) | 0.2500 | 0.5576 (3) | 0.0382 (13) | |
C11 | −1.0056 (4) | 0.2500 | 0.6427 (3) | 0.0576 (16) | |
H11A | −1.0663 | 0.2500 | 0.6689 | 0.069* | |
C12 | −0.9174 (4) | 0.2500 | 0.6808 (3) | 0.0537 (15) | |
H12A | −0.9183 | 0.2500 | 0.7329 | 0.064* | |
C13 | −1.0535 (4) | 0.2500 | 0.2795 (3) | 0.0527 (15) | |
H13A | −1.0956 | 0.3561 | 0.2843 | 0.063* | 0.50 |
H13B | −1.0956 | 0.1439 | 0.2843 | 0.063* | 0.50 |
C14 | −0.9988 (4) | 0.2500 | 0.2065 (3) | 0.081 (2) | |
H14A | −1.0468 | 0.2500 | 0.1663 | 0.122* | |
H14B | −0.9572 | 0.1446 | 0.2032 | 0.122* | 0.50 |
H14C | −0.9572 | 0.3554 | 0.2032 | 0.122* | 0.50 |
C15 | −0.4675 (3) | 0.2500 | 0.5431 (3) | 0.0578 (17) | |
H15A | −0.4576 | 0.1442 | 0.5740 | 0.069* | 0.50 |
H15B | −0.4576 | 0.3558 | 0.5740 | 0.069* | 0.50 |
C16 | −0.3943 (4) | 0.2500 | 0.4794 (3) | 0.0608 (17) | |
H16A | −0.3266 | 0.2500 | 0.4987 | 0.091* | |
H16B | −0.4046 | 0.3554 | 0.4494 | 0.091* | 0.50 |
H16C | −0.4046 | 0.1446 | 0.4494 | 0.091* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0278 (3) | 0.0404 (3) | 0.0285 (3) | 0.000 | 0.0007 (2) | 0.000 |
Cl1 | 0.0576 (6) | 0.0440 (6) | 0.0523 (6) | 0.0023 (5) | 0.0032 (5) | −0.0099 (5) |
O1 | 0.0288 (18) | 0.102 (3) | 0.034 (2) | 0.000 | −0.0083 (16) | 0.000 |
O2 | 0.0246 (17) | 0.070 (3) | 0.038 (2) | 0.000 | −0.0068 (15) | 0.000 |
N1 | 0.024 (2) | 0.042 (3) | 0.031 (2) | 0.000 | −0.0012 (17) | 0.000 |
N2 | 0.030 (2) | 0.040 (2) | 0.029 (2) | 0.000 | −0.0015 (19) | 0.000 |
C1 | 0.030 (2) | 0.045 (3) | 0.048 (3) | 0.000 | 0.000 (3) | 0.000 |
C2 | 0.023 (2) | 0.064 (4) | 0.052 (4) | 0.000 | −0.006 (2) | 0.000 |
C3 | 0.030 (3) | 0.058 (4) | 0.065 (4) | 0.000 | 0.013 (3) | 0.000 |
C4 | 0.036 (3) | 0.047 (3) | 0.044 (3) | 0.000 | 0.009 (2) | 0.000 |
C5 | 0.030 (2) | 0.030 (3) | 0.037 (3) | 0.000 | 0.008 (2) | 0.000 |
C6 | 0.034 (3) | 0.035 (3) | 0.029 (3) | 0.000 | 0.005 (2) | 0.000 |
C7 | 0.052 (3) | 0.044 (3) | 0.027 (3) | 0.000 | 0.002 (2) | 0.000 |
C8 | 0.062 (4) | 0.072 (4) | 0.025 (3) | 0.000 | −0.009 (3) | 0.000 |
C9 | 0.040 (3) | 0.072 (4) | 0.034 (3) | 0.000 | −0.009 (3) | 0.000 |
C10 | 0.033 (3) | 0.049 (4) | 0.033 (3) | 0.000 | −0.006 (2) | 0.000 |
C11 | 0.048 (3) | 0.076 (5) | 0.048 (4) | 0.000 | 0.025 (3) | 0.000 |
C12 | 0.054 (3) | 0.077 (5) | 0.029 (3) | 0.000 | 0.008 (3) | 0.000 |
C13 | 0.038 (3) | 0.069 (4) | 0.050 (4) | 0.000 | −0.017 (3) | 0.000 |
C14 | 0.051 (4) | 0.149 (7) | 0.044 (4) | 0.000 | −0.013 (3) | 0.000 |
C15 | 0.030 (3) | 0.096 (5) | 0.047 (4) | 0.000 | −0.011 (3) | 0.000 |
C16 | 0.034 (3) | 0.093 (5) | 0.056 (4) | 0.000 | −0.003 (3) | 0.000 |
Zn1—N1 | 2.065 (3) | C7—C8 | 1.406 (7) |
Zn1—N2 | 2.118 (4) | C7—C12 | 1.431 (7) |
Zn1—Cl1 | 2.2022 (10) | C8—C9 | 1.362 (7) |
Zn1—Cl1i | 2.2022 (10) | C8—H8A | 0.9300 |
O1—C1 | 1.336 (6) | C9—C10 | 1.415 (6) |
O1—C13 | 1.434 (5) | C9—H9A | 0.9300 |
O2—C10 | 1.335 (5) | C11—C12 | 1.353 (7) |
O2—C15 | 1.443 (5) | C11—H11A | 0.9300 |
N1—C1 | 1.318 (5) | C12—H12A | 0.9300 |
N1—C5 | 1.366 (6) | C13—C14 | 1.493 (7) |
N2—C10 | 1.322 (5) | C13—H13A | 0.9700 |
N2—C6 | 1.358 (5) | C13—H13B | 0.9700 |
C1—C2 | 1.410 (6) | C14—H14A | 0.9600 |
C2—C3 | 1.356 (7) | C14—H14B | 0.9600 |
C2—H2A | 0.9300 | C14—H14C | 0.9600 |
C3—C4 | 1.418 (7) | C15—C16 | 1.496 (7) |
C3—H3A | 0.9300 | C15—H15A | 0.9700 |
C4—C5 | 1.390 (6) | C15—H15B | 0.9700 |
C4—C11 | 1.434 (7) | C16—H16A | 0.9600 |
C5—C6 | 1.433 (6) | C16—H16B | 0.9600 |
C6—C7 | 1.400 (6) | C16—H16C | 0.9600 |
N1—Zn1—N2 | 79.43 (13) | C7—C8—H8A | 119.5 |
N1—Zn1—Cl1 | 112.53 (5) | C8—C9—C10 | 119.1 (5) |
N2—Zn1—Cl1 | 112.90 (4) | C8—C9—H9A | 120.5 |
N1—Zn1—Cl1i | 112.53 (5) | C10—C9—H9A | 120.5 |
N2—Zn1—Cl1i | 112.90 (4) | N2—C10—O2 | 114.2 (4) |
Cl1—Zn1—Cl1i | 119.74 (6) | N2—C10—C9 | 121.3 (4) |
C1—O1—C13 | 123.1 (4) | O2—C10—C9 | 124.5 (4) |
C10—O2—C15 | 119.3 (4) | C12—C11—C4 | 120.8 (5) |
C1—N1—C5 | 119.2 (4) | C12—C11—H11A | 119.6 |
C1—N1—Zn1 | 126.6 (3) | C4—C11—H11A | 119.6 |
C5—N1—Zn1 | 114.2 (3) | C11—C12—C7 | 121.0 (5) |
C10—N2—C6 | 119.4 (4) | C11—C12—H12A | 119.5 |
C10—N2—Zn1 | 128.4 (3) | C7—C12—H12A | 119.5 |
C6—N2—Zn1 | 112.3 (3) | O1—C13—C14 | 104.6 (4) |
N1—C1—O1 | 111.8 (4) | O1—C13—H13A | 110.8 |
N1—C1—C2 | 122.0 (5) | C14—C13—H13A | 110.8 |
O1—C1—C2 | 126.3 (4) | O1—C13—H13B | 110.8 |
C3—C2—C1 | 119.0 (5) | C14—C13—H13B | 110.8 |
C3—C2—H2A | 120.5 | H13A—C13—H13B | 108.9 |
C1—C2—H2A | 120.5 | C13—C14—H14A | 109.5 |
C2—C3—C4 | 120.5 (5) | C13—C14—H14B | 109.5 |
C2—C3—H3A | 119.7 | H14A—C14—H14B | 109.5 |
C4—C3—H3A | 119.7 | C13—C14—H14C | 109.5 |
C5—C4—C3 | 116.6 (5) | H14A—C14—H14C | 109.5 |
C5—C4—C11 | 118.9 (5) | H14B—C14—H14C | 109.5 |
C3—C4—C11 | 124.5 (5) | O2—C15—C16 | 107.6 (4) |
N1—C5—C4 | 122.7 (4) | O2—C15—H15A | 110.2 |
N1—C5—C6 | 116.6 (4) | C16—C15—H15A | 110.2 |
C4—C5—C6 | 120.7 (5) | O2—C15—H15B | 110.2 |
N2—C6—C7 | 123.3 (4) | C16—C15—H15B | 110.2 |
N2—C6—C5 | 117.5 (4) | H15A—C15—H15B | 108.5 |
C7—C6—C5 | 119.2 (4) | C15—C16—H16A | 109.5 |
C6—C7—C8 | 116.0 (4) | C15—C16—H16B | 109.5 |
C6—C7—C12 | 119.3 (5) | H16A—C16—H16B | 109.5 |
C8—C7—C12 | 124.6 (5) | C15—C16—H16C | 109.5 |
C9—C8—C7 | 121.0 (4) | H16A—C16—H16C | 109.5 |
C9—C8—H8A | 119.5 | H16B—C16—H16C | 109.5 |
N2—Zn1—N1—C1 | 180.0 | C10—N2—C6—C7 | 0.000 (1) |
Cl1—Zn1—N1—C1 | −69.44 (5) | Zn1—N2—C6—C7 | 180.0 |
Cl1i—Zn1—N1—C1 | 69.44 (5) | C10—N2—C6—C5 | 180.0 |
N2—Zn1—N1—C5 | 0.0 | Zn1—N2—C6—C5 | 0.0 |
Cl1—Zn1—N1—C5 | 110.56 (5) | N1—C5—C6—N2 | 0.0 |
Cl1i—Zn1—N1—C5 | −110.56 (5) | C4—C5—C6—N2 | 180.0 |
N1—Zn1—N2—C10 | 180.0 | N1—C5—C6—C7 | 180.000 (1) |
Cl1—Zn1—N2—C10 | 69.87 (5) | C4—C5—C6—C7 | 0.000 (1) |
Cl1i—Zn1—N2—C10 | −69.87 (5) | N2—C6—C7—C8 | 0.000 (1) |
N1—Zn1—N2—C6 | 0.0 | C5—C6—C7—C8 | 180.000 (1) |
Cl1—Zn1—N2—C6 | −110.13 (5) | N2—C6—C7—C12 | 180.000 (1) |
Cl1i—Zn1—N2—C6 | 110.13 (5) | C5—C6—C7—C12 | 0.000 (1) |
C5—N1—C1—O1 | 180.0 | C6—C7—C8—C9 | 0.000 (1) |
Zn1—N1—C1—O1 | 0.0 | C12—C7—C8—C9 | 180.000 (1) |
C5—N1—C1—C2 | 0.0 | C7—C8—C9—C10 | 0.000 (1) |
Zn1—N1—C1—C2 | 180.0 | C6—N2—C10—O2 | 180.0 |
C13—O1—C1—N1 | 180.0 | Zn1—N2—C10—O2 | 0.0 |
C13—O1—C1—C2 | 0.0 | C6—N2—C10—C9 | 0.000 (1) |
N1—C1—C2—C3 | 0.000 (1) | Zn1—N2—C10—C9 | 180.0 |
O1—C1—C2—C3 | 180.0 | C15—O2—C10—N2 | 180.0 |
C1—C2—C3—C4 | 0.000 (1) | C15—O2—C10—C9 | 0.000 (1) |
C2—C3—C4—C5 | 0.000 (1) | C8—C9—C10—N2 | 0.000 (1) |
C2—C3—C4—C11 | 180.000 (1) | C8—C9—C10—O2 | 180.000 (1) |
C1—N1—C5—C4 | 0.000 (1) | C5—C4—C11—C12 | 0.000 (1) |
Zn1—N1—C5—C4 | 180.0 | C3—C4—C11—C12 | 180.000 (1) |
C1—N1—C5—C6 | 180.0 | C4—C11—C12—C7 | 0.000 (2) |
Zn1—N1—C5—C6 | 0.0 | C6—C7—C12—C11 | 0.000 (2) |
C3—C4—C5—N1 | 0.0 | C8—C7—C12—C11 | 180.000 (1) |
C11—C4—C5—N1 | 180.0 | C1—O1—C13—C14 | 180.0 |
C3—C4—C5—C6 | 180.0 | C10—O2—C15—C16 | 180.0 |
C11—C4—C5—C6 | 0.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C16H16N2O2)] |
Mr | 404.58 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 291 |
a, b, c (Å) | 13.255 (3), 7.4403 (15), 17.874 (4) |
V (Å3) | 1762.7 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.71 |
Crystal size (mm) | 0.20 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Bruker APEX-II CCD detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.727, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5148, 1741, 1303 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.089, 1.08 |
No. of reflections | 1741 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.58 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).
Zn1—N1 | 2.065 (3) | Zn1—Cl1 | 2.2022 (10) |
Zn1—N2 | 2.118 (4) | Zn1—Cl1i | 2.2022 (10) |
N1—Zn1—N2 | 79.43 (13) | N1—Zn1—Cl1i | 112.53 (5) |
N1—Zn1—Cl1 | 112.53 (5) | N2—Zn1—Cl1i | 112.90 (4) |
N2—Zn1—Cl1 | 112.90 (4) | Cl1—Zn1—Cl1i | 119.74 (6) |
Symmetry code: (i) x, −y+1/2, z. |
Acknowledgements
We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.
References
Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475–2479. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Majumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846. Web of Science CSD CrossRef CAS Google Scholar
Pijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The compound 1,10-phenanthroline has been reported as used to synthesize some potential strong luminescent materials with d10 metals. It was predicted that the title compound which is composed of a derivative of 1,10-phenanthroline and a d10 metal would possess strong ligand to ligand or metal perturbed ligand to ligand emissions (Majumder et al., 2006; Bie, et al., 2006). The ligand 2,9-Diethoxy-1,10-phenanthroline as a derivative of 1,10-phenanthroline was synthesized at an earlier time and possesses antimycoplasmal activity in the presence of copper (Pijper, et al., 1984).
The title mononuclear zinc(II) complex is shown in Fig. 1. All non-hydrogen atoms, execpt for the Cl atoms, lie on a mirror plane. The ZnII ion is four coordinated by two nitrogen atoms from the 1,10-phenanthroline ring system (N1 and N2) and two chlorine atoms [Cl1, Cl1i. Symmetry code: (i) x, -y + 1/2, z], defining a disotorted tetrahedral coordination environment. In the crystal structure there are weak but significant π–π stacking interactions between phenanthroline rings (Fig. 2) with a centroid-to-centroid distance of 3.764 (1) Å.