organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Furylmethyl­ene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 24 June 2009; accepted 9 July 2009; online 15 July 2009)

In the title mol­ecule, C14H14O5, the 1,3-dioxane ring is in an envelope conformation with the ring C atom common to the cyclo­hexane ring forming the flap. The other five atoms of the 1,3-dioxane ring are essentially planar [maximum deviation from the least-squares plane = 0.041 (3) Å] and form a dihedral angle of 13.75 (2)° with the furan ring. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds form extended chains along [101].

Related literature

For the applications and conformational features of spiro compounds, see: Yaozhong et al. (1998[Yaozhong, J., Song, X., Zhi, J., Deng, J., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185-3189.]); Lian et al. (2008[Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.]); Wei et al. (2008[Wei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501-1514.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14O5

  • Mr = 262.25

  • Triclinic, [P \overline 1]

  • a = 7.0634 (14) Å

  • b = 9.5103 (19) Å

  • c = 10.183 (2) Å

  • α = 64.91 (3)°

  • β = 82.38 (3)°

  • γ = 84.76 (3)°

  • V = 613.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6043 measured reflections

  • 2779 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.285

  • S = 1.11

  • 2779 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.97 2.59 3.470 (4) 151
C14—H14A⋯O3ii 0.93 2.50 3.230 (2) 135
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x-1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Yaozhong et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity.

The 1,3-dioxane ring is in an envelope conformation with atom C1 forming the flap and the mean plane of the other five atoms (O1/O2/C1/C7—C9) form a dihedral angle of 13.75 (2)° with the furan ring O5/C11-C14). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the applications and conformational features of spiro compounds, see: Yaozhong et al. (1998); Lian et al. (2008); Wei et al. (2008).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in conc. sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of furan-2-carbaldehyde (5.76 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an acetone-ethylacetate (2:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.
3-(2-Furylmethylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C14H14O5Z = 2
Mr = 262.25F(000) = 276
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0634 (14) ÅCell parameters from 6043 reflections
b = 9.5103 (19) Åθ = 3.5–27.5°
c = 10.183 (2) ŵ = 0.11 mm1
α = 64.91 (3)°T = 293 K
β = 82.38 (3)°Block, colorless
γ = 84.76 (3)°0.18 × 0.15 × 0.12 mm
V = 613.6 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
1456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
ω scansh = 99
6043 measured reflectionsk = 1212
2779 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1559P)2 + 0.0401P]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H14O5γ = 84.76 (3)°
Mr = 262.25V = 613.6 (2) Å3
Triclinic, P1Z = 2
a = 7.0634 (14) ÅMo Kα radiation
b = 9.5103 (19) ŵ = 0.11 mm1
c = 10.183 (2) ÅT = 293 K
α = 64.91 (3)°0.18 × 0.15 × 0.12 mm
β = 82.38 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1456 reflections with I > 2σ(I)
6043 measured reflectionsRint = 0.031
2779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.285H-atom parameters constrained
S = 1.11Δρmax = 0.48 e Å3
2779 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2535 (3)0.2890 (3)0.7823 (3)0.0604 (7)
O10.0683 (3)0.4802 (3)0.8363 (3)0.0619 (7)
O40.1675 (3)0.1935 (4)0.6368 (3)0.0709 (8)
O50.4171 (3)0.3169 (3)0.4940 (3)0.0651 (7)
O30.2004 (4)0.5790 (3)0.7400 (3)0.0726 (8)
C90.0519 (5)0.3713 (4)0.6897 (4)0.0539 (8)
C20.3594 (5)0.3844 (4)0.9383 (4)0.0611 (9)
H2A0.31910.43431.00350.073*
H2B0.43180.45770.85250.073*
C70.0735 (5)0.4822 (4)0.7561 (4)0.0550 (8)
C80.1248 (4)0.2756 (4)0.7003 (4)0.0524 (8)
C100.2000 (5)0.3676 (4)0.6195 (4)0.0556 (9)
H10A0.30120.43510.62570.067*
C10.1860 (5)0.3406 (4)0.8941 (4)0.0553 (8)
C130.2757 (5)0.1442 (5)0.4174 (4)0.0637 (9)
H13A0.25410.07650.37230.076*
C60.0755 (5)0.2159 (4)1.0210 (4)0.0591 (9)
H6A0.02950.18630.98670.071*
H6B0.02240.25601.09180.071*
C110.2361 (4)0.2852 (4)0.5395 (4)0.0542 (8)
C140.4363 (6)0.2284 (5)0.4246 (5)0.0697 (10)
H14A0.54730.22540.38600.084*
C50.2062 (6)0.0738 (5)1.0931 (5)0.0708 (11)
H5A0.13560.00241.17790.085*
H5B0.24780.02721.02540.085*
C40.3771 (6)0.1165 (5)1.1386 (5)0.0770 (12)
H4A0.33610.15201.21460.092*
H4B0.46080.02511.17870.092*
C30.4854 (5)0.2409 (5)1.0140 (5)0.0751 (12)
H3A0.54070.20050.94400.090*
H3B0.58930.27021.04960.090*
C120.1479 (5)0.1787 (5)0.4913 (4)0.0654 (10)
H12A0.02410.13690.50550.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0605 (14)0.0740 (17)0.0588 (14)0.0104 (11)0.0124 (11)0.0400 (13)
O10.0783 (16)0.0523 (15)0.0644 (15)0.0134 (11)0.0225 (12)0.0321 (12)
O40.0637 (14)0.089 (2)0.0877 (19)0.0176 (13)0.0172 (13)0.0652 (17)
O50.0641 (14)0.0686 (17)0.0778 (17)0.0096 (11)0.0223 (12)0.0433 (14)
O30.0799 (17)0.0654 (17)0.0807 (18)0.0260 (13)0.0212 (14)0.0403 (15)
C90.0649 (19)0.0522 (19)0.0511 (18)0.0083 (14)0.0129 (14)0.0280 (16)
C20.065 (2)0.060 (2)0.067 (2)0.0029 (16)0.0113 (16)0.0333 (18)
C70.0639 (19)0.0490 (19)0.0562 (19)0.0063 (14)0.0102 (15)0.0264 (16)
C80.0567 (18)0.056 (2)0.0497 (17)0.0035 (14)0.0042 (13)0.0288 (16)
C100.0621 (19)0.055 (2)0.0515 (18)0.0086 (14)0.0084 (14)0.0254 (16)
C10.070 (2)0.052 (2)0.0520 (18)0.0160 (15)0.0160 (15)0.0307 (16)
C130.079 (2)0.060 (2)0.067 (2)0.0098 (17)0.0219 (17)0.0397 (19)
C60.0599 (19)0.059 (2)0.066 (2)0.0009 (15)0.0098 (16)0.0322 (18)
C110.0547 (18)0.0522 (19)0.061 (2)0.0055 (13)0.0150 (14)0.0279 (17)
C140.074 (2)0.072 (3)0.084 (3)0.0043 (18)0.0272 (19)0.049 (2)
C50.089 (3)0.053 (2)0.066 (2)0.0002 (18)0.0142 (19)0.0202 (19)
C40.093 (3)0.066 (3)0.077 (3)0.018 (2)0.036 (2)0.031 (2)
C30.063 (2)0.079 (3)0.101 (3)0.0110 (19)0.028 (2)0.052 (3)
C120.067 (2)0.065 (2)0.077 (2)0.0113 (17)0.0228 (18)0.041 (2)
Geometric parameters (Å, º) top
O2—C81.361 (4)C13—C141.340 (5)
O2—C11.433 (4)C13—C121.390 (5)
O1—C71.368 (4)C13—H13A0.9300
O1—C11.438 (4)C6—C51.525 (5)
O4—C81.206 (4)C6—H6A0.9700
O5—C141.333 (5)C6—H6B0.9700
O5—C111.382 (4)C11—C121.371 (5)
O3—C71.199 (4)C14—H14A0.9300
C9—C101.354 (5)C5—C41.495 (6)
C9—C81.463 (5)C5—H5A0.9700
C9—C71.463 (5)C5—H5B0.9700
C2—C11.507 (5)C4—C31.493 (6)
C2—C31.522 (6)C4—H4A0.9700
C2—H2A0.9700C4—H4B0.9700
C2—H2B0.9700C3—H3A0.9700
C10—C111.405 (5)C3—H3B0.9700
C10—H10A0.9300C12—H12A0.9300
C1—C61.512 (5)
C8—O2—C1118.6 (2)C5—C6—H6A109.6
C7—O1—C1117.9 (3)C1—C6—H6B109.6
C14—O5—C11107.2 (3)C5—C6—H6B109.6
C10—C9—C8124.7 (3)H6A—C6—H6B108.1
C10—C9—C7116.0 (3)C12—C11—O5107.1 (3)
C8—C9—C7119.3 (3)C12—C11—C10140.0 (3)
C1—C2—C3110.5 (3)O5—C11—C10112.9 (3)
C1—C2—H2A109.5O5—C14—C13111.5 (3)
C3—C2—H2A109.5O5—C14—H14A124.2
C1—C2—H2B109.5C13—C14—H14A124.2
C3—C2—H2B109.5C4—C5—C6111.3 (3)
H2A—C2—H2B108.1C4—C5—H5A109.4
O3—C7—O1117.7 (3)C6—C5—H5A109.4
O3—C7—C9125.2 (3)C4—C5—H5B109.4
O1—C7—C9117.0 (3)C6—C5—H5B109.4
O4—C8—O2118.5 (3)H5A—C5—H5B108.0
O4—C8—C9125.1 (3)C3—C4—C5111.9 (3)
O2—C8—C9116.3 (3)C3—C4—H4A109.2
C9—C10—C11134.7 (3)C5—C4—H4A109.2
C9—C10—H10A112.7C3—C4—H4B109.2
C11—C10—H10A112.7C5—C4—H4B109.2
O2—C1—O1110.2 (3)H4A—C4—H4B107.9
O2—C1—C2106.7 (3)C4—C3—C2112.3 (3)
O1—C1—C2106.3 (3)C4—C3—H3A109.1
O2—C1—C6111.0 (3)C2—C3—H3A109.1
O1—C1—C6110.2 (3)C4—C3—H3B109.1
C2—C1—C6112.3 (3)C2—C3—H3B109.1
C14—C13—C12106.0 (4)H3A—C3—H3B107.9
C14—C13—H13A127.0C11—C12—C13108.1 (3)
C12—C13—H13A127.0C11—C12—H12A125.9
C1—C6—C5110.3 (3)C13—C12—H12A125.9
C1—C6—H6A109.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.593.470 (4)151
C14—H14A···O3ii0.932.503.230 (2)135
C10—H10A···O30.932.342.764 (3)107
C12—H12A···O40.932.272.879 (2)122
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14O5
Mr262.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0634 (14), 9.5103 (19), 10.183 (2)
α, β, γ (°)64.91 (3), 82.38 (3), 84.76 (3)
V3)613.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6043, 2779, 1456
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.285, 1.11
No. of reflections2779
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.593.470 (4)151
C14—H14A···O3ii0.932.503.230 (2)135
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y+1, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501–1514.  CAS Google Scholar
First citationYaozhong, J., Song, X., Zhi, J., Deng, J., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185–3189.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds