organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1807-o1808

(E)-1-Phenyl­ethanone semicarbazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 June 2009; accepted 3 July 2009; online 11 July 2009)

In the title compound, C9H11N3O, the benzene ring is disordered over two positions with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] recommends the solution in the space group C2/m with a = 7.3050 (3), b = 6.6745 (2), c = 18.3853 (6) Å and β = 96.986 (2)°. However, the large number of non-extinct reflections needed to be ignored if C2/m is chosen suggested that the space group is incorrect, even though the R values are lower than that for P21/c. The semicarbazone group is essentially planar, with a maximum deviation of 0.046 (1) Å for one of the N atoms. The mean plane of the semicarbazone group forms dihedral angles of 33.61 (8) and 39.1 (9)° with the benzene ring of the major and minor components, respectively. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into extended chains along the c axis. The crystal structure is further stabilized by weak inter­molucular C—H⋯π inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For applications of semicarbazone derivatives, see: Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta A, 62, 1089-1094.]); Jain et al. (2002[Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101-110.]); Pilgram (1978[Pilgram, K. H. G. (1978). US Patent No. 4 108 399.]); Warren et al. (1977[Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]). For the preparation of the title compound, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Roger, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.],b[Fun, H.-K., Quah, C. K., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1634-o1635.],c[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009c). Acta Cryst. E65, o1619-o1620.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O

  • Mr = 177.21

  • Monoclinic, P 21 /c

  • a = 18.3853 (6) Å

  • b = 6.6745 (2) Å

  • c = 7.3050 (3) Å

  • β = 96.986 (2)°

  • V = 889.76 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.13 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.997

  • 9294 measured reflections

  • 2034 independent reflections

  • 1449 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.181

  • S = 1.08

  • 2034 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.88 (3) 2.02 (3) 2.901 (3) 177.2 (19)
N3—H2N3⋯O1ii 0.86 (3) 2.04 (3) 2.894 (3) 173 (3)
C2A—H2AACgiii 0.93 2.93 3.707 (2) 142
C5A—H5AACgiv 0.93 2.90 3.678 (2) 142
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of the C1A,C2A,C3,C4A,C5A,C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazone find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometalics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of a semicarbazone of potential commercial importance, (I).

The bond lengths and angles of the title compound (I), (Fig. 1) are comparable to related structures (Fun et al., 2009a, b, c). A maximum deviation of -0.046 (1) Å for atom N2 from atoms O1, N1, N2, N3, C6, C7, C8 and C9 indicates that the semicarbazone group is essentially coplanar. This mean plane makes dihedral angle of 33.61 (8) and 39.1 (9)° with benzene ring of the major and minor component (C1A-C2A-C3-C4A-C5A-C6 and C1B-C2B-C3-C4B-C5B-C6), respectively. The molecules are linked together into infinite one-dimensional chains by the intermolecular N2—H1N2···O1i and N3—H2N3···O1ii (see Table 1 for symmetry codes) hydrogen bonds along the c axis (Fig. 2) and these hydrogen bonds generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is stabilized by the weak intermolucular C—H···π interactions (Table 1).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of semicarbazone derivatives, see: Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation of the title compound, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg is the centroid of C1A,C2A,C3,C4A,C5A,C6 benzene ring.

Experimental top

Semicarbazide hydrochloride (1.0 g, 8.9 mmol) and freshly recrystallized sodium acetate (0.9 g, 10.9 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, (1.0 g, 8.32 mmol) acetophenone was added and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from alcohol. Yield: 1.37 g (93%). M.p. 473-478 K.

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined freely. The benzene ring is disordered over 2 position with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON recommends the solution in C2/m space group with a = 7.3050 (3), b = 6.6745 (2), c = 18.3853 (6) Å and β = 96.986 (2)°. However the large number of non-extinct (i.e. observed) reflections needed to be ignored for the C2/m case suggested that the space group is incorrect even though the R-values are lower than that for P21/c.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. All disorder components are shown. The minor disorder component is shown with open bonds.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the b axis. Intermolecular hydrogen bonds are shown in as dashed lines. Only the major disorder component is shown.
(E)-1-Phenylethanone semicarbazone top
Crystal data top
C9H11N3OF(000) = 376
Mr = 177.21Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2113 reflections
a = 18.3853 (6) Åθ = 3.4–29.6°
b = 6.6745 (2) ŵ = 0.09 mm1
c = 7.3050 (3) ÅT = 100 K
β = 96.986 (2)°Plate, colourless
V = 889.76 (5) Å30.32 × 0.13 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2034 independent reflections
Radiation source: fine-focus sealed tube1449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2323
Tmin = 0.881, Tmax = 0.997k = 88
9294 measured reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
2034 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C9H11N3OV = 889.76 (5) Å3
Mr = 177.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.3853 (6) ŵ = 0.09 mm1
b = 6.6745 (2) ÅT = 100 K
c = 7.3050 (3) Å0.32 × 0.13 × 0.03 mm
β = 96.986 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2034 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1449 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.997Rint = 0.043
9294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
2034 reflectionsΔρmin = 0.46 e Å3
148 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.51345 (7)0.4963 (2)0.7657 (2)0.0165 (4)
N10.32789 (9)0.4925 (2)0.8239 (3)0.0130 (4)
N20.40259 (9)0.4938 (2)0.8715 (3)0.0142 (4)
N30.41052 (10)0.4917 (3)0.5585 (3)0.0174 (5)
C30.05611 (11)0.5011 (3)0.7581 (3)0.0169 (5)
H3A0.00640.50070.71510.020*
C60.20605 (10)0.5016 (3)0.8879 (3)0.0114 (4)
C70.28592 (11)0.5045 (3)0.9528 (3)0.0119 (5)
C80.44581 (11)0.4942 (3)0.7296 (3)0.0135 (5)
C90.31370 (11)0.5196 (3)1.1541 (3)0.0149 (5)
H9A0.34440.63571.17500.022*
H9B0.34150.40181.19200.022*
H9C0.27300.53111.22420.022*
C1A0.17941 (11)0.3969 (3)0.7290 (3)0.0144 (5)0.922 (5)
H1AA0.21200.32670.66490.017*0.922 (5)
C2A0.10550 (12)0.3954 (3)0.6644 (3)0.0176 (5)0.922 (5)
H2AA0.08880.32380.55840.021*0.922 (5)
C4A0.08190 (11)0.6070 (3)0.9162 (3)0.0164 (5)0.922 (5)
H4AA0.04920.67840.97890.020*0.922 (5)
C5A0.15600 (11)0.6073 (3)0.9816 (3)0.0142 (5)0.922 (5)
H5AA0.17260.67811.08830.017*0.922 (5)
C1B0.1548 (15)0.395 (4)0.979 (4)0.022 (7)*0.078 (5)
H1BA0.17250.32681.08610.026*0.078 (5)
C2B0.0822 (18)0.385 (5)0.923 (5)0.032 (8)*0.078 (5)
H2BA0.05060.30960.98610.039*0.078 (5)
C4B0.1048 (17)0.607 (5)0.664 (5)0.032 (8)*0.078 (5)
H4BA0.08760.67560.55700.038*0.078 (5)
C5B0.1785 (16)0.612 (5)0.728 (4)0.025 (7)*0.078 (5)
H5BA0.21030.68710.66620.030*0.078 (5)
H1N20.4271 (15)0.500 (3)0.983 (4)0.025 (7)*
H1N30.3627 (14)0.495 (3)0.543 (4)0.019 (6)*
H2N30.4366 (14)0.496 (3)0.469 (4)0.020 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0110 (7)0.0241 (8)0.0143 (8)0.0017 (6)0.0015 (6)0.0005 (6)
N10.0088 (8)0.0142 (8)0.0159 (9)0.0007 (6)0.0010 (6)0.0003 (7)
N20.0094 (8)0.0207 (9)0.0121 (9)0.0008 (7)0.0002 (7)0.0002 (8)
N30.0102 (9)0.0303 (11)0.0118 (9)0.0010 (8)0.0020 (7)0.0001 (8)
C30.0101 (9)0.0172 (10)0.0227 (12)0.0015 (8)0.0007 (8)0.0033 (9)
C60.0110 (9)0.0101 (9)0.0131 (10)0.0001 (7)0.0008 (7)0.0028 (8)
C70.0131 (9)0.0088 (9)0.0135 (10)0.0005 (7)0.0006 (8)0.0005 (8)
C80.0121 (9)0.0133 (9)0.0152 (10)0.0000 (7)0.0024 (7)0.0005 (8)
C90.0118 (9)0.0243 (11)0.0086 (10)0.0009 (8)0.0016 (7)0.0015 (8)
C1A0.0135 (10)0.0140 (11)0.0155 (12)0.0018 (8)0.0015 (9)0.0016 (9)
C2A0.0158 (11)0.0169 (11)0.0189 (12)0.0007 (9)0.0028 (9)0.0009 (9)
C4A0.0127 (11)0.0186 (12)0.0185 (12)0.0018 (9)0.0045 (9)0.0008 (9)
C5A0.0160 (11)0.0143 (11)0.0120 (11)0.0012 (9)0.0011 (8)0.0008 (9)
Geometric parameters (Å, º) top
O1—C81.240 (2)C6—C71.487 (3)
N1—C71.290 (3)C7—C91.500 (3)
N1—N21.375 (2)C9—H9A0.9600
N2—C81.380 (3)C9—H9B0.9600
N2—H1N20.88 (3)C9—H9C0.9600
N3—C81.336 (3)C1A—C2A1.383 (3)
N3—H1N30.87 (3)C1A—H1AA0.9300
N3—H2N30.85 (3)C2A—H2AA0.9300
C3—C4B1.39 (3)C4A—C5A1.388 (3)
C3—C4A1.387 (3)C4A—H4AA0.9300
C3—C2A1.394 (3)C5A—H5AA0.9300
C3—C2B1.46 (3)C1B—C2B1.35 (4)
C3—H3A0.9300C1B—H1BA0.9300
C6—C1A1.392 (3)C2B—H2BA0.9300
C6—C5A1.402 (3)C4B—C5B1.38 (4)
C6—C1B1.41 (3)C4B—H4BA0.9300
C6—C5B1.42 (3)C5B—H5BA0.9300
C7—N1—N2118.86 (18)N3—C8—N2116.34 (18)
N1—N2—C8117.31 (18)C7—C9—H9A109.5
N1—N2—H1N2128.1 (18)C7—C9—H9B109.5
C8—N2—H1N2114.6 (18)H9A—C9—H9B109.5
C8—N3—H1N3119.0 (17)C7—C9—H9C109.5
C8—N3—H2N3117.3 (18)H9A—C9—H9C109.5
H1N3—N3—H2N3124 (2)H9B—C9—H9C109.5
C4B—C3—C4A88.6 (14)C2A—C1A—C6121.3 (2)
C4B—C3—C2A61.1 (13)C2A—C1A—H1AA119.4
C4A—C3—C2A119.32 (19)C6—C1A—H1AA119.4
C4B—C3—C2B120.7 (19)C1A—C2A—C3120.0 (2)
C4A—C3—C2B62.5 (13)C1A—C2A—H2AA120.0
C2A—C3—C2B88.3 (13)C3—C2A—H2AA120.0
C4B—C3—H3A120.2C3—C4A—C5A120.6 (2)
C4A—C3—H3A120.3C3—C4A—H4AA119.7
C2A—C3—H3A120.3C5A—C4A—H4AA119.7
C2B—C3—H3A119.1C4A—C5A—C6120.4 (2)
C1A—C6—C5A118.32 (18)C4A—C5A—H5AA119.8
C1A—C6—C1B87.4 (12)C6—C5A—H5AA119.8
C5A—C6—C1B60.4 (11)C2B—C1B—C6125 (3)
C1A—C6—C5B61.3 (12)C2B—C1B—H1BA117.4
C5A—C6—C5B87.2 (12)C6—C1B—H1BA117.4
C1B—C6—C5B117.2 (17)C1B—C2B—C3116 (3)
C1A—C6—C7120.39 (17)C1B—C2B—H2BA122.1
C5A—C6—C7121.27 (19)C3—C2B—H2BA122.1
C1B—C6—C7123.1 (12)C5B—C4B—C3121 (3)
C5B—C6—C7119.7 (12)C5B—C4B—H4BA119.6
N1—C7—C6114.93 (18)C3—C4B—H4BA119.6
N1—C7—C9123.85 (18)C4B—C5B—C6120 (3)
C6—C7—C9121.22 (17)C4B—C5B—H5BA119.9
O1—C8—N3124.04 (19)C6—C5B—H5BA119.9
O1—C8—N2119.63 (19)
C7—N1—N2—C8175.79 (18)C2B—C3—C4A—C5A70.3 (14)
N2—N1—C7—C6179.91 (16)C3—C4A—C5A—C60.5 (3)
N2—N1—C7—C90.2 (3)C1A—C6—C5A—C4A0.1 (3)
C1A—C6—C7—N130.7 (3)C1B—C6—C5A—C4A68.7 (14)
C5A—C6—C7—N1147.66 (19)C5B—C6—C5A—C4A54.9 (12)
C1B—C6—C7—N1139.4 (14)C7—C6—C5A—C4A178.31 (19)
C5B—C6—C7—N141.4 (14)C1A—C6—C1B—C2B54 (3)
C1A—C6—C7—C9149.0 (2)C5A—C6—C1B—C2B71 (3)
C5A—C6—C7—C932.6 (3)C5B—C6—C1B—C2B2 (4)
C1B—C6—C7—C940.4 (14)C7—C6—C1B—C2B179 (2)
C5B—C6—C7—C9138.9 (14)C6—C1B—C2B—C32 (4)
N1—N2—C8—O1179.65 (17)C4B—C3—C2B—C1B2 (4)
N1—N2—C8—N30.5 (3)C4A—C3—C2B—C1B68 (2)
C5A—C6—C1A—C2A0.3 (3)C2A—C3—C2B—C1B57 (3)
C1B—C6—C1A—C2A53.8 (12)C4A—C3—C4B—C5B54 (3)
C5B—C6—C1A—C2A69.3 (13)C2A—C3—C4B—C5B71 (3)
C7—C6—C1A—C2A178.78 (19)C2B—C3—C4B—C5B2 (4)
C6—C1A—C2A—C30.4 (3)C3—C4B—C5B—C62 (4)
C4B—C3—C2A—C1A69.9 (17)C1A—C6—C5B—C4B68 (3)
C4A—C3—C2A—C1A0.1 (3)C5A—C6—C5B—C4B57 (3)
C2B—C3—C2A—C1A57.0 (13)C1B—C6—C5B—C4B2 (3)
C4B—C3—C4A—C5A55.7 (14)C7—C6—C5B—C4B179 (2)
C2A—C3—C4A—C5A0.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (3)2.02 (3)2.901 (3)177.2 (19)
N3—H2N3···O1ii0.86 (3)2.04 (3)2.894 (3)173 (3)
C2A—H2AA···Cgiii0.932.933.707 (2)142
C5A—H5AA···Cgiv0.932.903.678 (2)142
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y1/2, z3/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O
Mr177.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.3853 (6), 6.6745 (2), 7.3050 (3)
β (°) 96.986 (2)
V3)889.76 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.13 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.881, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
9294, 2034, 1449
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.181, 1.08
No. of reflections2034
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (3)2.02 (3)2.901 (3)177.2 (19)
N3—H2N3···O1ii0.86 (3)2.04 (3)2.894 (3)173 (3)
C2A—H2AA···Cgiii0.93002.933.707 (2)142
C5A—H5AA···Cgiv0.93002.903.678 (2)142
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y1/2, z3/2; (iv) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim. Acta A, 62, 1089–1094.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1634–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009c). Acta Cryst. E65, o1619–o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Roger, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.  Google Scholar
First citationJain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110.  Web of Science CrossRef CAS Google Scholar
First citationPilgram, K. H. G. (1978). US Patent No. 4 108 399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1807-o1808
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds