organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[(2,3,5,6-Tetra­methyl-p-phenyl­ene)di­methyl­ene]bis­­[2-chloro-N-(2-chloro­ethyl)ethanamine]

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 1 July 2009; accepted 6 July 2009; online 15 July 2009)

The title mol­ecule, C20H32Cl4N2, lies on an inversion center. A weak intra­molecular C—H⋯N hydrogen bond may, in part, influence the conformation of the mol­ecule.

Related literature

For a related crystal structure, see: Yin et al. (2006[Yin, L.-N., Liu, Q.-X., Wu, X.-M., Cheng, F.-J. & Guo, J.-H. (2006). Acta Cryst. E62, o2510-o2511.]). For general background to the pharmacological activity of nitro­gen mustards, see: Rachid et al. (2007[Rachid, Z., Brahimi, F., Qiu, Q., Williams, C., Hartley, J. M., Hartley, J. A. & Jean-Claude, B. J. (2007). J. Med. Chem. 50, 2605-2608.]); Duan et al. (2008[Duan, J. X., Jiao, H., Kaizerman, J., Stanton, T. & Evans, J. W. (2008). J. Med. Chem. 51, 2412-2420.]); Zhou et al. (2009[Zhou, C. H., Gan, L. L., Zhang, F. F., Zhang, Y. Y., Wang, G. Z., Jin, L. & Geng, R. X. (2009). Sci. China Ser. Chem. 52, 415-458.]); Zhuang et al. (2008[Zhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin. Pharm. J. 43, 1281-1287.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32Cl4N2

  • Mr = 442.29

  • Monoclinic, P 21 /c

  • a = 13.6694 (14) Å

  • b = 9.751 (1) Å

  • c = 8.3997 (8) Å

  • β = 93.695 (2)°

  • V = 1117.27 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.948

  • 13369 measured reflections

  • 2732 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.04

  • 2732 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯N1 0.96 2.43 3.159 (3) 133

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrogen mustards such as chlorambucil and melphalan are cytotoxic chemotherapy agents, which are widely used in the treatment of a variety of malignant diseases. As bifunctional DNA-alkylating agents, nitrogen mustards are able to crosslink cellular DNA and thereby interfere with the DNA replication (Rachid et al., 2007; Duan et al., 2008; Zhuang et al., 2008; Zhou et al., 2009). The title compound (I), was obtained by the chlorination of the corresponding diol. Here we present the crystal structure of (I) (Fig. 1).

The title molecule lies on an inversion center. A weak intramolecular C—H···N hydrogen bond may, in part, influence the conformation of the molecule.

Related literature top

For a related crystal structure, see: Yin et al. (2006). For general background to the pharmacological activity of nitrogen mustards, see: Rachid et al. (2007); Duan et al. (2008); Zhou et al. (2009); Zhuang et al. (2008).

Experimental top

To a stirred solution of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene (6.40g, 20mmol) in absolute alcohol (30mL) at 348K potassium carbonate (5.53g, 40mmol) and 2,2'-azanediyldiethanol (4.21g, 40mmol) were added. The progress of the reaction was monitored by TLC. The mixture was filtered to remove the inorganic salts, the solvent was concentrated under reduced pressure and recrystallization from absolute alcohol gave the intermediate2,2',2'',2'''-(2,3,5,6-tetramethyl-p-phenylene)bis (methylene) bis (azanetriyl)tetraethanol (Yield: 5.23g, 71.0%; white solid; Mp., 417-418K). Sulfonyl chloride (40mL) was added dropwise to the intermediate (3.68g, 10mmol) in an ice-salt bath and then the mixture was stirred slowly at gentle reflux for three hours. Sulfonyl chloride was removed under reduced pressure, after cooling, water was added cautiously, and then the mixture was neutralized with NaHCO3. The suspension was filtered and washed with chloroform. The organic layer was washed with water, dried over anhydrous Na2SO4 and the solvent was removed in vacuo. The resulting residue was recrystallized from chloroform to give the title compound (Yield: 3.83g, 86.7%; white solid; Mp. 389-340K).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(C) (aromatic and methylene C) or 1.5Ueq(C) (methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) -x, -y, -z+1].
N,N'-[(2,3,5,6-Tetramethyl-p-phenylene)dimethylene]bis[2- chloro-N-(2-chloroethyl)ethanamine] top
Crystal data top
C20H32Cl4N2F(000) = 468
Mr = 442.29Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4998 reflections
a = 13.6694 (14) Åθ = 2.6–28.0°
b = 9.751 (1) ŵ = 0.54 mm1
c = 8.3997 (8) ÅT = 298 K
β = 93.695 (2)°Block, white
V = 1117.27 (19) Å30.16 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 1717
Tmin = 0.919, Tmax = 0.948k = 1212
13369 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.1826P]
where P = (Fo2 + 2Fc2)/3
2732 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H32Cl4N2V = 1117.27 (19) Å3
Mr = 442.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.6694 (14) ŵ = 0.54 mm1
b = 9.751 (1) ÅT = 298 K
c = 8.3997 (8) Å0.16 × 0.12 × 0.10 mm
β = 93.695 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2732 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
2283 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.948Rint = 0.031
13369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
2732 reflectionsΔρmin = 0.25 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12764 (15)0.2248 (2)0.6112 (3)0.0550 (5)
H1A0.10260.26500.70460.083*
H1B0.12960.29300.52900.083*
H1C0.19260.19060.63660.083*
C20.06149 (12)0.10771 (19)0.5531 (2)0.0396 (4)
C30.03006 (12)0.13651 (18)0.4753 (2)0.0400 (4)
C40.06146 (16)0.2853 (2)0.4533 (3)0.0578 (5)
H4A0.04190.33640.54770.087*
H4B0.13140.28970.43450.087*
H4C0.03090.32370.36370.087*
C50.09103 (12)0.02818 (19)0.57881 (19)0.0380 (4)
C60.18937 (12)0.0575 (2)0.6671 (2)0.0426 (4)
H6A0.19390.00560.76580.051*
H6B0.19270.15410.69440.051*
C70.27229 (13)0.08753 (18)0.4172 (2)0.0381 (4)
H7A0.20540.10960.38030.046*
H7B0.30990.17200.42380.046*
C80.31611 (16)0.0100 (2)0.3029 (2)0.0476 (4)
H8A0.38210.03420.34250.057*
H8B0.27740.09340.29520.057*
C90.36606 (12)0.04271 (19)0.6687 (2)0.0403 (4)
H9A0.41580.07150.59860.048*
H9B0.35770.11590.74480.048*
C100.40134 (13)0.0836 (2)0.7575 (2)0.0454 (4)
H10A0.45510.05920.83320.055*
H10B0.34870.11990.81710.055*
N10.27367 (9)0.02246 (15)0.57401 (16)0.0353 (3)
Cl10.31962 (4)0.06609 (6)0.10972 (6)0.0624 (2)
Cl20.44162 (4)0.21356 (5)0.62479 (7)0.05813 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (10)0.0543 (12)0.0691 (14)0.0048 (8)0.0002 (9)0.0143 (10)
C20.0307 (8)0.0500 (10)0.0387 (9)0.0023 (7)0.0059 (6)0.0025 (7)
C30.0325 (8)0.0471 (10)0.0412 (9)0.0009 (7)0.0081 (7)0.0014 (7)
C40.0443 (11)0.0506 (11)0.0779 (15)0.0040 (8)0.0004 (10)0.0066 (10)
C50.0279 (8)0.0535 (10)0.0329 (8)0.0005 (7)0.0044 (6)0.0014 (7)
C60.0319 (8)0.0623 (11)0.0336 (8)0.0002 (7)0.0028 (6)0.0061 (8)
C70.0364 (8)0.0440 (9)0.0341 (8)0.0054 (7)0.0033 (6)0.0018 (7)
C80.0630 (12)0.0471 (10)0.0329 (9)0.0063 (9)0.0049 (8)0.0025 (8)
C90.0309 (8)0.0485 (10)0.0410 (9)0.0037 (7)0.0019 (7)0.0027 (7)
C100.0373 (9)0.0608 (12)0.0376 (9)0.0038 (8)0.0024 (7)0.0015 (8)
N10.0272 (6)0.0470 (8)0.0316 (7)0.0005 (5)0.0007 (5)0.0014 (6)
Cl10.0788 (4)0.0759 (4)0.0331 (3)0.0251 (3)0.0084 (2)0.0071 (2)
Cl20.0622 (3)0.0514 (3)0.0611 (3)0.0097 (2)0.0064 (2)0.0031 (2)
Geometric parameters (Å, º) top
C1—C21.518 (3)C6—H6B0.9700
C1—H1A0.9600C7—N11.461 (2)
C1—H1B0.9600C7—C81.504 (2)
C1—H1C0.9600C7—H7A0.9700
C2—C51.398 (3)C7—H7B0.9700
C2—C31.402 (2)C8—Cl11.7874 (19)
C3—C5i1.403 (2)C8—H8A0.9700
C3—C41.521 (3)C8—H8B0.9700
C4—H4A0.9600C9—N11.462 (2)
C4—H4B0.9600C9—C101.503 (3)
C4—H4C0.9600C9—H9A0.9700
C5—C3i1.403 (2)C9—H9B0.9700
C5—C61.520 (2)C10—Cl21.798 (2)
C6—N11.473 (2)C10—H10A0.9700
C6—H6A0.9700C10—H10B0.9700
C2—C1—H1A109.5N1—C7—C8108.58 (14)
C2—C1—H1B109.5N1—C7—H7A110.0
H1A—C1—H1B109.5C8—C7—H7A110.0
C2—C1—H1C109.5N1—C7—H7B110.0
H1A—C1—H1C109.5C8—C7—H7B110.0
H1B—C1—H1C109.5H7A—C7—H7B108.4
C5—C2—C3120.14 (16)C7—C8—Cl1110.64 (13)
C5—C2—C1120.23 (16)C7—C8—H8A109.5
C3—C2—C1119.63 (17)Cl1—C8—H8A109.5
C2—C3—C5i119.59 (16)C7—C8—H8B109.5
C2—C3—C4118.96 (16)Cl1—C8—H8B109.5
C5i—C3—C4121.45 (16)H8A—C8—H8B108.1
C3—C4—H4A109.5N1—C9—C10113.44 (14)
C3—C4—H4B109.5N1—C9—H9A108.9
H4A—C4—H4B109.5C10—C9—H9A108.9
C3—C4—H4C109.5N1—C9—H9B108.9
H4A—C4—H4C109.5C10—C9—H9B108.9
H4B—C4—H4C109.5H9A—C9—H9B107.7
C2—C5—C3i120.26 (15)C9—C10—Cl2111.79 (13)
C2—C5—C6119.41 (16)C9—C10—H10A109.3
C3i—C5—C6120.33 (16)Cl2—C10—H10A109.3
N1—C6—C5113.28 (14)C9—C10—H10B109.3
N1—C6—H6A108.9Cl2—C10—H10B109.3
C5—C6—H6A108.9H10A—C10—H10B107.9
N1—C6—H6B108.9C7—N1—C9113.11 (13)
C5—C6—H6B108.9C7—N1—C6114.36 (13)
H6A—C6—H6B107.7C9—N1—C6110.96 (13)
C5—C2—C3—C5i1.1 (3)C3i—C5—C6—N1110.03 (18)
C1—C2—C3—C5i179.79 (17)N1—C7—C8—Cl1178.35 (12)
C5—C2—C3—C4178.23 (17)N1—C9—C10—Cl269.96 (18)
C1—C2—C3—C40.9 (3)C8—C7—N1—C986.20 (18)
C3—C2—C5—C3i1.1 (3)C8—C7—N1—C6145.47 (16)
C1—C2—C5—C3i179.79 (17)C10—C9—N1—C7138.52 (16)
C3—C2—C5—C6178.45 (15)C10—C9—N1—C691.42 (19)
C1—C2—C5—C60.7 (3)C5—C6—N1—C754.9 (2)
C2—C5—C6—N170.5 (2)C5—C6—N1—C9175.66 (15)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···N10.962.433.159 (3)133

Experimental details

Crystal data
Chemical formulaC20H32Cl4N2
Mr442.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.6694 (14), 9.751 (1), 8.3997 (8)
β (°) 93.695 (2)
V3)1117.27 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.919, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13369, 2732, 2283
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.04
No. of reflections2732
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···N10.962.433.159 (3)132.7
 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, J. X., Jiao, H., Kaizerman, J., Stanton, T. & Evans, J. W. (2008). J. Med. Chem. 51, 2412–2420.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRachid, Z., Brahimi, F., Qiu, Q., Williams, C., Hartley, J. M., Hartley, J. A. & Jean-Claude, B. J. (2007). J. Med. Chem. 50, 2605–2608.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, L.-N., Liu, Q.-X., Wu, X.-M., Cheng, F.-J. & Guo, J.-H. (2006). Acta Cryst. E62, o2510–o2511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C. H., Gan, L. L., Zhang, F. F., Zhang, Y. Y., Wang, G. Z., Jin, L. & Geng, R. X. (2009). Sci. China Ser. Chem. 52, 415–458.  Web of Science CrossRef CAS Google Scholar
First citationZhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin. Pharm. J. 43, 1281–1287.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds