metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-bis­­{[9-(pyrazin-2-yl)-9H-carbazole]copper(II)}

aSchool of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 1 July 2009; accepted 10 July 2009; online 18 July 2009)

The title complex, [Cu2(CH3COO)4(C16H11N3)2], lies on an inversion centre, with four acetate ligands bridging two symmetry-related CuII ions and two monodentate 9-(pyrazin-2-yl)-9H-carbazole ligands coordinating each CuII ion via the N atoms of the pyrazine rings, forming slightly distorted square-pyramidal geometries. There are weak ππ stacking inter­actions between the pyrrole rings of symmetry-related mol­ecules, with a centroid-to-centroid distance of 3.692 (2) Å.

Related literature

For a related structure, see: Meng et al. (2009[Meng, L., Yang, L. Y. & Shi, J. M. (2009). Acta Cryst. E65, m646.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C16H11N3)2]

  • Mr = 853.81

  • Triclinic, [P \overline 1]

  • a = 8.2608 (12) Å

  • b = 9.7181 (15) Å

  • c = 11.9688 (18) Å

  • α = 83.002 (2)°

  • β = 86.756 (2)°

  • γ = 72.533 (2)°

  • V = 909.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 298 K

  • 0.35 × 0.34 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.672, Tmax = 0.765

  • 4972 measured reflections

  • 3493 independent reflections

  • 3183 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.05

  • 3493 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 2.11 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

9-(pyrazin-2-yl)-9H-carbazole is potentially good ligand for forming complexes with ππ stacking interactions due to the large conjugation plane of carbazole ring system. Interest in synthesizing complexes with ππ stacking interactions motivated us to obtain the title complex and herein the crystal structure of the title compound, (I), is reported.

Figure 1 and Table 1 reveal that the unique CuII ion is in a slightly distorted square-pyramidal coordination geometry with N1 atom lying at the apex. Four actate anions bridge two symmetry related CuII ions with a Cu···Cu separation of 2.6120 (7) Å, which is shorter than that of the similar binuclear CuII complex (Meng et al., 2009). In (I) there is an inversion center in the middle of the two CuII ions. There is a weak ππ interaction with Cg1···Cg1i = 3.692 (2) Å (symmetry code: (i): 1-x, 1-y, 2-z and Cg1···Cg1iperp = 3.505 Å; α is 0.00° [Cg1 is the centroid of C5–C8/N3 ring; Cg1···Cg1iperp is the perpendicular distance from ring Cg1 to ring Cg1i; α is the dihedral angle between the Cg1 ring plane and the Cg1i ring plane]. The dihedral angle between pyrazine ring plane and carbazole ring system plane is 20.01 (14)°.

Related literature top

For a related structure, see: Meng et al. (2009).

Experimental top

9-(pyrazin-2-yl)-9H-carbazole (0.1115 g, 0.455 mmol) was dissolved in 10 ml acetonitrile and copper acetate hydrate (0.0910 g, 0.456 mmol) was added into 10 ml methanol. The solutions were mixed and stirred for a few minutes. Blue single crystals were obtained after the solution had been allowed to stand at room temperature for one month.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C)for methyl group and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for 9-(pyrazin-2-yl)-9H-carbazole H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Tetra-µ-acetato-bis{[9-(pyrazin-2-yl)-9H-carbazole]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C16H11N3)2]Z = 1
Mr = 853.81F(000) = 438
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2608 (12) ÅCell parameters from 3057 reflections
b = 9.7181 (15) Åθ = 2.6–28.0°
c = 11.9688 (18) ŵ = 1.23 mm1
α = 83.002 (2)°T = 298 K
β = 86.756 (2)°Block, blue
γ = 72.533 (2)°0.35 × 0.34 × 0.23 mm
V = 909.5 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3493 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.672, Tmax = 0.765k = 1111
4972 measured reflectionsl = 614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0986P)2 + 0.8758P]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max = 0.011
255 parametersΔρmax = 2.11 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C2H3O2)4(C16H11N3)2]γ = 72.533 (2)°
Mr = 853.81V = 909.5 (2) Å3
Triclinic, P1Z = 1
a = 8.2608 (12) ÅMo Kα radiation
b = 9.7181 (15) ŵ = 1.23 mm1
c = 11.9688 (18) ÅT = 298 K
α = 83.002 (2)°0.35 × 0.34 × 0.23 mm
β = 86.756 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3493 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3183 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.765Rint = 0.018
4972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 2.11 e Å3
3493 reflectionsΔρmin = 0.42 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4087 (6)0.8536 (5)1.0557 (4)0.0503 (10)
H10.34420.94881.03480.060*
C20.5243 (5)0.7790 (4)0.9784 (3)0.0406 (8)
H20.53870.82350.90680.049*
C30.3877 (6)0.7884 (5)1.1634 (3)0.0540 (11)
H30.30850.83991.21310.065*
C40.4827 (5)0.6489 (5)1.1969 (3)0.0453 (9)
H40.46900.60571.26910.054*
C50.5990 (4)0.5734 (4)1.1220 (3)0.0334 (7)
C60.6169 (4)0.6377 (4)1.0109 (3)0.0307 (7)
C70.7230 (4)0.4315 (4)1.1335 (3)0.0334 (7)
C80.8123 (4)0.4117 (4)1.0305 (3)0.0322 (7)
C90.9440 (5)0.2866 (4)1.0177 (3)0.0468 (9)
H91.00300.27220.94950.056*
C100.9841 (6)0.1841 (5)1.1104 (4)0.0587 (12)
H101.07210.09921.10380.070*
C110.8984 (6)0.2028 (5)1.2130 (4)0.0545 (11)
H110.93080.13211.27380.065*
C120.7652 (5)0.3261 (4)1.2249 (3)0.0434 (9)
H120.70490.33831.29280.052*
C130.7908 (4)0.5546 (3)0.8399 (3)0.0281 (6)
C140.6825 (4)0.6558 (4)0.7633 (3)0.0326 (7)
H140.57450.70710.78720.039*
C150.8839 (4)0.6001 (4)0.6240 (3)0.0358 (7)
H150.92280.61560.55040.043*
C160.9841 (5)0.4945 (4)0.6993 (3)0.0402 (8)
H161.08710.43600.67350.048*
C170.3340 (4)1.0792 (3)0.6772 (3)0.0296 (7)
C180.2354 (5)1.1199 (4)0.7839 (3)0.0397 (8)
H18A0.28351.18140.81950.059*
H18B0.24041.03370.83380.059*
H18C0.11921.17070.76630.059*
C190.2777 (4)0.8810 (4)0.4608 (3)0.0349 (7)
C200.1397 (5)0.8131 (5)0.4428 (4)0.0529 (10)
H20A0.05220.83760.49960.079*
H20B0.18720.70960.44750.079*
H20C0.09220.84910.36980.079*
Cu10.58853 (4)0.87807 (4)0.55418 (3)0.02722 (17)
N10.7313 (4)0.6801 (3)0.6565 (2)0.0305 (6)
N20.9401 (4)0.4724 (3)0.8071 (2)0.0363 (6)
N30.7439 (4)0.5373 (3)0.9538 (2)0.0315 (6)
O10.4480 (3)0.9594 (3)0.6823 (2)0.0384 (6)
O20.4057 (3)0.8024 (3)0.5140 (2)0.0423 (6)
O30.7047 (3)0.8328 (3)0.4096 (2)0.0385 (6)
O40.7467 (3)0.9890 (3)0.5768 (2)0.0416 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (2)0.040 (2)0.045 (2)0.0041 (17)0.0040 (18)0.0097 (18)
C20.048 (2)0.0384 (19)0.0271 (17)0.0019 (16)0.0018 (15)0.0000 (15)
C30.056 (2)0.056 (3)0.042 (2)0.003 (2)0.0116 (19)0.014 (2)
C40.051 (2)0.055 (2)0.0289 (18)0.0145 (18)0.0077 (16)0.0053 (17)
C50.0367 (18)0.0358 (18)0.0281 (17)0.0130 (14)0.0011 (13)0.0008 (14)
C60.0341 (17)0.0333 (17)0.0237 (15)0.0089 (13)0.0003 (12)0.0013 (13)
C70.0371 (18)0.0353 (18)0.0277 (16)0.0124 (14)0.0032 (13)0.0031 (14)
C80.0355 (17)0.0332 (17)0.0243 (16)0.0074 (14)0.0038 (13)0.0055 (13)
C90.048 (2)0.043 (2)0.035 (2)0.0024 (17)0.0051 (16)0.0082 (16)
C100.060 (3)0.040 (2)0.054 (3)0.0091 (19)0.002 (2)0.0175 (19)
C110.066 (3)0.047 (2)0.041 (2)0.011 (2)0.007 (2)0.0198 (18)
C120.054 (2)0.047 (2)0.0280 (18)0.0169 (18)0.0018 (16)0.0097 (16)
C130.0319 (16)0.0272 (15)0.0231 (15)0.0077 (12)0.0012 (12)0.0025 (12)
C140.0315 (16)0.0341 (17)0.0253 (15)0.0014 (13)0.0012 (12)0.0006 (13)
C150.0404 (19)0.0351 (18)0.0256 (16)0.0049 (14)0.0057 (13)0.0016 (13)
C160.0349 (18)0.0380 (19)0.0354 (19)0.0035 (14)0.0057 (14)0.0040 (15)
C170.0301 (16)0.0306 (16)0.0256 (15)0.0061 (13)0.0037 (12)0.0026 (13)
C180.0437 (19)0.0377 (19)0.0293 (17)0.0010 (15)0.0068 (14)0.0038 (15)
C190.0340 (17)0.044 (2)0.0286 (16)0.0138 (15)0.0053 (13)0.0072 (15)
C200.044 (2)0.065 (3)0.057 (3)0.027 (2)0.0008 (19)0.009 (2)
Cu10.0280 (3)0.0261 (3)0.0220 (2)0.00184 (16)0.00039 (15)0.00279 (16)
N10.0330 (14)0.0294 (14)0.0233 (13)0.0030 (11)0.0007 (11)0.0039 (11)
N20.0341 (15)0.0350 (15)0.0309 (15)0.0006 (12)0.0001 (12)0.0055 (12)
N30.0344 (14)0.0314 (14)0.0222 (13)0.0038 (11)0.0008 (11)0.0068 (11)
O10.0408 (13)0.0348 (13)0.0285 (12)0.0027 (10)0.0064 (10)0.0000 (10)
O20.0409 (14)0.0401 (14)0.0466 (15)0.0150 (11)0.0051 (11)0.0024 (12)
O30.0397 (13)0.0364 (13)0.0273 (12)0.0039 (10)0.0039 (10)0.0024 (10)
O40.0364 (13)0.0433 (15)0.0440 (15)0.0121 (11)0.0071 (11)0.0029 (12)
Geometric parameters (Å, º) top
C1—C31.391 (6)C14—H140.9300
C1—C21.393 (5)C15—N11.332 (4)
C1—H10.9300C15—C161.378 (5)
C2—C61.376 (5)C15—H150.9300
C2—H20.9300C16—N21.330 (4)
C3—C41.371 (6)C16—H160.9300
C3—H30.9300C17—O3i1.253 (4)
C4—C51.380 (5)C17—O11.256 (4)
C4—H40.9300C17—C181.504 (4)
C5—C61.419 (5)C18—H18A0.9600
C5—C71.446 (5)C18—H18B0.9600
C6—N31.409 (4)C18—H18C0.9600
C7—C121.386 (5)C19—O4i1.248 (4)
C7—C81.405 (5)C19—O21.257 (4)
C8—C91.384 (5)C19—C201.516 (5)
C8—N31.423 (4)C20—H20A0.9600
C9—C101.382 (5)C20—H20B0.9600
C9—H90.9300C20—H20C0.9600
C10—C111.385 (6)Cu1—O31.963 (2)
C10—H100.9300Cu1—O11.967 (2)
C11—C121.378 (6)Cu1—O21.972 (3)
C11—H110.9300Cu1—O41.975 (3)
C12—H120.9300Cu1—N12.196 (3)
C13—N21.321 (4)Cu1—Cu1i2.6120 (7)
C13—C141.398 (4)O3—C17i1.253 (4)
C13—N31.399 (4)O4—C19i1.248 (4)
C14—N11.332 (4)
C3—C1—C2121.2 (4)N2—C16—H16118.5
C3—C1—H1119.4C15—C16—H16118.5
C2—C1—H1119.4O3i—C17—O1125.3 (3)
C6—C2—C1118.3 (3)O3i—C17—C18117.4 (3)
C6—C2—H2120.9O1—C17—C18117.3 (3)
C1—C2—H2120.9C17—C18—H18A109.5
C4—C3—C1120.6 (4)C17—C18—H18B109.5
C4—C3—H3119.7H18A—C18—H18B109.5
C1—C3—H3119.7C17—C18—H18C109.5
C3—C4—C5119.1 (4)H18A—C18—H18C109.5
C3—C4—H4120.5H18B—C18—H18C109.5
C5—C4—H4120.5O4i—C19—O2125.6 (3)
C4—C5—C6120.5 (3)O4i—C19—C20117.2 (3)
C4—C5—C7132.3 (3)O2—C19—C20117.2 (3)
C6—C5—C7107.1 (3)C19—C20—H20A109.5
C2—C6—N3131.4 (3)C19—C20—H20B109.5
C2—C6—C5120.2 (3)H20A—C20—H20B109.5
N3—C6—C5108.3 (3)C19—C20—H20C109.5
C12—C7—C8120.6 (3)H20A—C20—H20C109.5
C12—C7—C5131.4 (4)H20B—C20—H20C109.5
C8—C7—C5107.9 (3)O3—Cu1—O1168.81 (10)
C9—C8—C7120.9 (3)O3—Cu1—O290.06 (12)
C9—C8—N3131.0 (3)O1—Cu1—O289.26 (12)
C7—C8—N3108.1 (3)O3—Cu1—O488.60 (11)
C10—C9—C8117.2 (4)O1—Cu1—O489.90 (12)
C10—C9—H9121.4O2—Cu1—O4168.78 (10)
C8—C9—H9121.4O3—Cu1—N197.47 (10)
C9—C10—C11122.6 (4)O1—Cu1—N193.71 (10)
C9—C10—H10118.7O2—Cu1—N196.33 (11)
C11—C10—H10118.7O4—Cu1—N194.88 (11)
C12—C11—C10120.1 (4)O3—Cu1—Cu1i86.47 (7)
C12—C11—H11119.9O1—Cu1—Cu1i82.34 (7)
C10—C11—H11119.9O2—Cu1—Cu1i84.81 (8)
C11—C12—C7118.6 (4)O4—Cu1—Cu1i83.99 (8)
C11—C12—H12120.7N1—Cu1—Cu1i175.89 (7)
C7—C12—H12120.7C15—N1—C14117.8 (3)
N2—C13—C14121.0 (3)C15—N1—Cu1121.7 (2)
N2—C13—N3118.1 (3)C14—N1—Cu1118.9 (2)
C14—C13—N3120.9 (3)C13—N2—C16116.8 (3)
N1—C14—C13121.1 (3)C13—N3—C6126.2 (3)
N1—C14—H14119.4C13—N3—C8125.4 (3)
C13—C14—H14119.4C6—N3—C8108.4 (3)
N1—C15—C16120.0 (3)C17—O1—Cu1125.2 (2)
N1—C15—H15120.0C19—O2—Cu1122.3 (2)
C16—C15—H15120.0C17i—O3—Cu1120.6 (2)
N2—C16—C15123.0 (3)C19i—O4—Cu1123.3 (2)
C3—C1—C2—C60.7 (6)O4—Cu1—N1—C1497.6 (3)
C2—C1—C3—C40.9 (7)Cu1i—Cu1—N1—C1423.6 (13)
C1—C3—C4—C50.4 (7)C14—C13—N2—C162.4 (5)
C3—C4—C5—C61.7 (6)N3—C13—N2—C16177.8 (3)
C3—C4—C5—C7175.6 (4)C15—C16—N2—C131.9 (6)
C1—C2—C6—N3178.2 (4)N2—C13—N3—C6161.2 (3)
C1—C2—C6—C52.8 (6)C14—C13—N3—C619.0 (5)
C4—C5—C6—C23.4 (5)N2—C13—N3—C821.7 (5)
C7—C5—C6—C2174.5 (3)C14—C13—N3—C8158.2 (3)
C4—C5—C6—N3179.8 (3)C2—C6—N3—C139.3 (6)
C7—C5—C6—N31.9 (4)C5—C6—N3—C13174.8 (3)
C4—C5—C7—C120.6 (7)C2—C6—N3—C8173.2 (4)
C6—C5—C7—C12176.9 (4)C5—C6—N3—C82.7 (4)
C4—C5—C7—C8177.9 (4)C9—C8—N3—C136.0 (6)
C6—C5—C7—C80.3 (4)C7—C8—N3—C13175.1 (3)
C12—C7—C8—C90.2 (6)C9—C8—N3—C6176.5 (4)
C5—C7—C8—C9177.8 (3)C7—C8—N3—C62.5 (4)
C12—C7—C8—N3178.9 (3)O3i—C17—O1—Cu12.1 (5)
C5—C7—C8—N31.3 (4)C18—C17—O1—Cu1177.6 (2)
C7—C8—C9—C100.7 (6)O3—Cu1—O1—C172.9 (7)
N3—C8—C9—C10178.1 (4)O2—Cu1—O1—C1783.6 (3)
C8—C9—C10—C110.0 (8)O4—Cu1—O1—C1785.2 (3)
C9—C10—C11—C121.3 (8)N1—Cu1—O1—C17179.9 (3)
C10—C11—C12—C71.8 (7)Cu1i—Cu1—O1—C171.2 (3)
C8—C7—C12—C111.1 (6)O4i—C19—O2—Cu13.3 (5)
C5—C7—C12—C11175.9 (4)C20—C19—O2—Cu1175.5 (2)
N2—C13—C14—N15.0 (5)O3—Cu1—O2—C1988.5 (3)
N3—C13—C14—N1175.2 (3)O1—Cu1—O2—C1980.3 (3)
N1—C15—C16—N23.9 (6)O4—Cu1—O2—C195.4 (7)
C16—C15—N1—C141.2 (5)N1—Cu1—O2—C19173.9 (3)
C16—C15—N1—Cu1166.9 (3)Cu1i—Cu1—O2—C192.1 (3)
C13—C14—N1—C153.0 (5)O1—Cu1—O3—C17i1.3 (7)
C13—C14—N1—Cu1163.1 (3)O2—Cu1—O3—C17i85.2 (3)
O3—Cu1—N1—C1521.3 (3)O4—Cu1—O3—C17i83.7 (3)
O1—Cu1—N1—C15158.1 (3)N1—Cu1—O3—C17i178.4 (3)
O2—Cu1—N1—C15112.2 (3)Cu1i—Cu1—O3—C17i0.4 (3)
O4—Cu1—N1—C1567.9 (3)O3—Cu1—O4—C19i86.1 (3)
Cu1i—Cu1—N1—C15141.9 (10)O1—Cu1—O4—C19i82.8 (3)
O3—Cu1—N1—C14173.2 (3)O2—Cu1—O4—C19i2.8 (7)
O1—Cu1—N1—C147.4 (3)N1—Cu1—O4—C19i176.6 (3)
O2—Cu1—N1—C1482.3 (3)Cu1i—Cu1—O4—C19i0.5 (3)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C16H11N3)2]
Mr853.81
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2608 (12), 9.7181 (15), 11.9688 (18)
α, β, γ (°)83.002 (2), 86.756 (2), 72.533 (2)
V3)909.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.35 × 0.34 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.672, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
4972, 3493, 3183
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.05
No. of reflections3493
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.11, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeng, L., Yang, L. Y. & Shi, J. M. (2009). Acta Cryst. E65, m646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds