metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[2,2′-(oxydi­methyl­ene)­di­pyridine]copper(II) perchlorate–aqua­chlorido[2,2′-(oxydi­methyl­ene)­di­pyridine]copper(II) perchlorate (1/1)

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: honglizhang1968@yahoo.cn

(Received 5 July 2009; accepted 10 July 2009; online 18 July 2009)

The asymmetric unit of the title compound, [CuCl(C12H12N2O)][CuCl(C12H12N2O)(H2O)](ClO4)2, contains two different discrete cations. In one cation, the CuII ion is coordinated in a slightly distorted square-planar geometry, while in the other the CuII ion is in a slightly distorted square-pyramidal environment. In the crystal structure, there are O—H⋯O hydrogen bonds between coordinated water mol­ecules and perchlorate anions. Both types of cations are linked into one-dimensional chains along the b axis by weak electrostatic Cu⋯Cl inter­actions, with Cu⋯Cl distances of 2.8088 (16) and 3.2074 (17) Å.

Related literature

For related structures, see: Li (2007[Li, J. M. (2007). Acta Cryst. E63, m2241.], 2008a[Li, J. M. (2008a). Acta Cryst. E64, m1467.],b[Li, J. (2008b). Acta Cryst. E64, m1468.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C12H12N2O)][CuCl(C12H12N2O)(H2O)](ClO4)2

  • Mr = 815.37

  • Triclinic, [P \overline 1]

  • a = 10.997 (2) Å

  • b = 12.882 (3) Å

  • c = 12.913 (3) Å

  • α = 97.174 (3)°

  • β = 112.031 (3)°

  • γ = 106.851 (3)°

  • V = 1565.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 298 K

  • 0.42 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. ]) Tmin = 0.525, Tmax = 0.709

  • 8530 measured reflections

  • 6009 independent reflections

  • 4063 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.185

  • S = 1.05

  • 6009 reflections

  • 411 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl3—Cu2 2.2511 (15)
Cl4—Cu1 2.2067 (14)
Cu1—N3 1.968 (4)
Cu1—O1 1.970 (3)
Cu1—N4 1.973 (4)
Cu2—N2 1.970 (4)
Cu2—N1 1.972 (4)
Cu2—O2 2.005 (4)
Cu2—O11 2.298 (4)
N3—Cu1—O1 80.97 (17)
N3—Cu1—N4 161.79 (19)
O1—Cu1—N4 81.04 (17)
N3—Cu1—Cl4 98.72 (13)
O1—Cu1—Cl4 173.09 (12)
N4—Cu1—Cl4 98.80 (14)
N2—Cu2—N1 159.85 (19)
N2—Cu2—O2 80.78 (17)
N1—Cu2—O2 80.45 (16)
N2—Cu2—Cl3 98.32 (14)
N1—Cu2—Cl3 98.09 (13)
O2—Cu2—Cl3 165.86 (13)
N2—Cu2—O11 93.89 (17)
N1—Cu2—O11 92.93 (17)
O2—Cu2—O11 88.68 (16)
Cl3—Cu2—O11 105.46 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯O5i 0.90 2.05 2.725 (8) 131
O11—H11B⋯O9ii 0.90 1.92 2.787 (10) 163
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of pyridine play an important role in modern coordination chemistry and some complexes using 2,2'-(oxydimethylene)dipyridine as a ligand have already been reported (Li, 2007, 2008a,b). Herein we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. Atom Cu1 is in a slightly distorted square-planar coordination environment and atom Cu2 is coordinated in a slightly distorted square-pyramidal environment with the O atom of the coordinated H2O ligand in the apical site. 2,2'-(oxydimethylene)dipyridine acts as a tridentate ligand as in the related CuII, ZnII and CdII complexes (Li, 2007, 2008a,b). In the crystal structure, there are O—H···O hydrogen bonds between coordinated water molecule and perchlorate ions and both types of cation are linked into one-dimensional chains along the b axis by weak electrostatic Cu···Cl interactions with Cu···Cl distances of 2.8088 (16) and 3.2074 (17) Å (see Fig. 2).

Related literature top

For related structures, see: Li (2007, 2008a,b).

Experimental top

An 8ml methanol solution of 2,2'-(oxydimetheylene)dipyridine (0.0386 g, 0.193 mmol) was added to an 8 ml H2O solution containing Cu(ClO4)2.6H2O (0.0730 g, 0.197 mmol), and the mixture was stirred for a few minutes. Then, diluted HCl solution was added into the mixed solution in drops until the pH = 4.0. Blue single crystals were obtained after the solution had been allowed to stand at room temperature for three weeks.

Refinement top

H2O-bound H atoms were located in a difference Fourier map, and placed in idealized positions with O—H = 0.90 Å and with Uiso(H) = 1.5Ueq(O); other H atoms were placed in calculated positions with C—H = 0.97 Å for methylene group and C—H = 0.93 Å for pyridyl group with Uiso(H) = 1.2Ueq(C). All H atoms were refined in a riding-model approximation.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Chlorido[2,2'-(oxydimethylene)dipyridine]copper(II) perchlorate– aquachlorido[2,2'-(oxydimethylene)dipyridine]copper(II) perchlorate (1/1) top
Crystal data top
[CuCl(C12H12N2O)][CuCl(C12H12N2O)(H2O)](ClO4)2Z = 2
Mr = 815.37F(000) = 824
Triclinic, P1Dx = 1.730 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.997 (2) ÅCell parameters from 2082 reflections
b = 12.882 (3) Åθ = 2.2–23.8°
c = 12.913 (3) ŵ = 1.76 mm1
α = 97.174 (3)°T = 298 K
β = 112.031 (3)°Block, blue
γ = 106.851 (3)°0.42 × 0.23 × 0.21 mm
V = 1565.7 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6009 independent reflections
Radiation source: fine-focus sealed tube4063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.525, Tmax = 0.709k = 1515
8530 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1088P)2]
where P = (Fo2 + 2Fc2)/3
6009 reflections(Δ/σ)max < 0.001
411 parametersΔρmax = 1.01 e Å3
3 restraintsΔρmin = 0.60 e Å3
Crystal data top
[CuCl(C12H12N2O)][CuCl(C12H12N2O)(H2O)](ClO4)2γ = 106.851 (3)°
Mr = 815.37V = 1565.7 (5) Å3
Triclinic, P1Z = 2
a = 10.997 (2) ÅMo Kα radiation
b = 12.882 (3) ŵ = 1.76 mm1
c = 12.913 (3) ÅT = 298 K
α = 97.174 (3)°0.42 × 0.23 × 0.21 mm
β = 112.031 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4063 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.709Rint = 0.024
8530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0623 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.05Δρmax = 1.01 e Å3
6009 reflectionsΔρmin = 0.60 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6320 (7)0.2031 (5)1.2505 (5)0.0595 (16)
H10.70800.22181.23170.071*
C20.6551 (8)0.2240 (6)1.3637 (6)0.078 (2)
H20.74640.25731.42240.093*
C30.5399 (10)0.1947 (7)1.3902 (6)0.085 (2)
H30.55430.20691.46710.102*
C40.4070 (9)0.1483 (6)1.3042 (6)0.073 (2)
H40.32960.13031.32110.088*
C50.3891 (7)0.1283 (5)1.1908 (5)0.0507 (14)
C60.2451 (6)0.0723 (5)1.0915 (5)0.0567 (15)
H6A0.20910.00751.08550.068*
H6B0.18030.10471.10310.068*
C70.1462 (6)0.0206 (5)0.8805 (5)0.0583 (15)
H7A0.06850.04710.86070.070*
H7B0.11260.05630.88520.070*
C80.2003 (6)0.0257 (5)0.7912 (5)0.0499 (13)
C90.1103 (7)0.0147 (6)0.6740 (6)0.0661 (17)
H90.01310.04380.64920.079*
C100.1668 (8)0.0112 (7)0.5942 (6)0.074 (2)
H100.10840.03950.51530.089*
C110.3108 (8)0.0351 (6)0.6341 (5)0.0664 (17)
H110.35090.03950.58210.080*
C120.3942 (6)0.0742 (5)0.7500 (5)0.0514 (14)
H120.49140.10500.77630.062*
C130.1523 (7)0.3151 (6)0.6299 (5)0.0659 (17)
H130.15440.26230.57510.079*
C140.2190 (6)0.3236 (5)0.7442 (5)0.0572 (15)
H140.26720.27570.76680.069*
C150.0808 (7)0.3866 (6)0.5959 (5)0.073 (2)
H150.03550.38360.51800.088*
C160.0780 (7)0.4616 (6)0.6790 (5)0.0682 (18)
H160.02880.50910.65760.082*
C170.1485 (6)0.4672 (5)0.7953 (5)0.0500 (13)
C180.1488 (7)0.5490 (5)0.8875 (5)0.0558 (14)
H18A0.20630.62470.89400.067*
H18B0.05360.54600.86890.067*
C190.2582 (7)0.6040 (5)1.0978 (5)0.0579 (15)
H19A0.18150.60961.11520.069*
H19B0.30720.67621.08980.069*
C200.3576 (6)0.5727 (5)1.1929 (5)0.0489 (13)
C210.4126 (7)0.6304 (6)1.3080 (5)0.0646 (17)
H210.38540.68901.32790.077*
C220.5060 (7)0.6021 (6)1.3923 (6)0.0704 (18)
H220.54670.64311.46930.084*
C230.5389 (7)0.5114 (6)1.3611 (5)0.0645 (17)
H230.59950.48821.41720.077*
C240.4815 (6)0.4558 (5)1.2464 (5)0.0555 (15)
H240.50370.39441.22570.067*
Cl10.19499 (15)0.84371 (14)0.29265 (13)0.0570 (4)
Cl20.89001 (17)0.69411 (16)0.70403 (14)0.0648 (4)
Cl30.47655 (15)0.34451 (11)0.99732 (12)0.0504 (4)
Cl40.65816 (14)0.13410 (12)1.00771 (12)0.0496 (3)
Cu10.44927 (6)0.12094 (6)0.99775 (5)0.0443 (2)
Cu20.31420 (7)0.41888 (6)0.99518 (5)0.0482 (2)
N10.3943 (5)0.4871 (4)1.1630 (4)0.0453 (10)
N20.2185 (5)0.3987 (4)0.8269 (4)0.0483 (11)
N30.3399 (5)0.0696 (4)0.8284 (4)0.0455 (10)
N40.4983 (5)0.1550 (4)1.1649 (4)0.0492 (11)
O10.2589 (4)0.0900 (3)0.9887 (3)0.0487 (9)
O20.2049 (4)0.5195 (3)0.9940 (3)0.0533 (10)
O31.0211 (5)0.7169 (5)0.6997 (5)0.0934 (16)
O40.8206 (10)0.7530 (10)0.6406 (10)0.221 (5)
O50.9105 (10)0.7257 (15)0.8086 (7)0.335 (10)
O60.8156 (9)0.5888 (7)0.6593 (12)0.253 (7)
O70.1715 (12)0.7738 (12)0.3473 (14)0.304 (9)
O80.3380 (7)0.8819 (6)0.3202 (8)0.157 (3)
O90.1338 (12)0.7967 (16)0.1870 (8)0.356 (12)
O100.1404 (10)0.9200 (9)0.3042 (11)0.218 (5)
O110.1331 (5)0.2760 (4)0.9973 (4)0.0675 (11)
H11A0.12920.31691.05660.101*
H11B0.05160.26760.93810.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (4)0.061 (4)0.047 (3)0.026 (3)0.018 (3)0.009 (3)
C20.082 (5)0.078 (5)0.053 (4)0.030 (4)0.012 (4)0.004 (3)
C30.125 (7)0.099 (6)0.048 (4)0.060 (6)0.042 (5)0.017 (4)
C40.102 (6)0.080 (5)0.072 (5)0.050 (5)0.057 (5)0.031 (4)
C50.071 (4)0.045 (3)0.057 (3)0.033 (3)0.039 (3)0.019 (3)
C60.065 (4)0.056 (4)0.072 (4)0.030 (3)0.046 (3)0.023 (3)
C70.042 (3)0.061 (4)0.070 (4)0.021 (3)0.019 (3)0.018 (3)
C80.047 (3)0.048 (3)0.056 (3)0.024 (3)0.018 (3)0.018 (3)
C90.045 (3)0.071 (4)0.064 (4)0.023 (3)0.005 (3)0.016 (3)
C100.077 (5)0.088 (5)0.049 (4)0.039 (4)0.012 (3)0.017 (4)
C110.083 (5)0.072 (5)0.052 (4)0.033 (4)0.032 (3)0.018 (3)
C120.054 (3)0.060 (4)0.046 (3)0.024 (3)0.024 (3)0.020 (3)
C130.079 (5)0.060 (4)0.053 (4)0.015 (4)0.033 (3)0.008 (3)
C140.066 (4)0.052 (4)0.047 (3)0.016 (3)0.024 (3)0.008 (3)
C150.078 (5)0.085 (5)0.041 (4)0.016 (4)0.021 (3)0.014 (3)
C160.073 (4)0.078 (5)0.048 (4)0.030 (4)0.017 (3)0.025 (3)
C170.047 (3)0.052 (4)0.047 (3)0.013 (3)0.020 (3)0.017 (3)
C180.061 (4)0.054 (4)0.054 (3)0.027 (3)0.022 (3)0.018 (3)
C190.080 (4)0.053 (4)0.056 (4)0.037 (3)0.037 (3)0.015 (3)
C200.055 (3)0.046 (3)0.050 (3)0.017 (3)0.029 (3)0.009 (3)
C210.086 (5)0.062 (4)0.049 (4)0.032 (4)0.031 (3)0.009 (3)
C220.081 (5)0.076 (5)0.049 (4)0.022 (4)0.032 (3)0.002 (3)
C230.063 (4)0.072 (5)0.046 (3)0.021 (3)0.013 (3)0.016 (3)
C240.070 (4)0.048 (3)0.051 (3)0.023 (3)0.027 (3)0.016 (3)
Cl10.0530 (9)0.0720 (11)0.0519 (9)0.0266 (8)0.0252 (7)0.0185 (8)
Cl20.0521 (9)0.0780 (12)0.0550 (9)0.0191 (8)0.0207 (7)0.0063 (8)
Cl30.0574 (8)0.0420 (8)0.0598 (8)0.0232 (6)0.0293 (7)0.0150 (6)
Cl40.0424 (7)0.0506 (8)0.0599 (8)0.0209 (6)0.0233 (6)0.0149 (6)
Cu10.0410 (4)0.0507 (4)0.0428 (4)0.0176 (3)0.0196 (3)0.0103 (3)
Cu20.0602 (5)0.0470 (4)0.0409 (4)0.0263 (3)0.0209 (3)0.0102 (3)
N10.054 (3)0.041 (3)0.041 (2)0.016 (2)0.021 (2)0.010 (2)
N20.057 (3)0.041 (3)0.043 (3)0.014 (2)0.021 (2)0.010 (2)
N30.046 (3)0.045 (3)0.043 (3)0.017 (2)0.017 (2)0.010 (2)
N40.063 (3)0.048 (3)0.047 (3)0.027 (2)0.030 (2)0.016 (2)
O10.049 (2)0.051 (2)0.057 (2)0.0208 (18)0.0314 (19)0.0182 (19)
O20.066 (3)0.054 (2)0.045 (2)0.033 (2)0.0210 (18)0.0109 (18)
O30.061 (3)0.107 (4)0.113 (4)0.026 (3)0.042 (3)0.029 (3)
O40.147 (8)0.260 (12)0.351 (15)0.151 (9)0.128 (9)0.141 (11)
O50.136 (8)0.70 (3)0.089 (6)0.059 (12)0.076 (6)0.015 (10)
O60.111 (6)0.093 (6)0.52 (2)0.001 (5)0.152 (10)0.014 (9)
O70.200 (10)0.398 (19)0.52 (2)0.167 (12)0.248 (14)0.384 (19)
O80.078 (4)0.124 (6)0.285 (10)0.039 (4)0.084 (5)0.091 (6)
O90.201 (11)0.66 (3)0.104 (7)0.225 (16)0.020 (7)0.122 (12)
O100.153 (7)0.171 (9)0.366 (14)0.118 (7)0.112 (8)0.048 (9)
O110.071 (3)0.066 (3)0.066 (3)0.019 (2)0.035 (2)0.019 (2)
Geometric parameters (Å, º) top
C1—N41.360 (7)C17—C181.486 (8)
C1—C21.364 (8)C18—O21.430 (6)
C1—H10.9300C18—H18A0.9700
C2—C31.394 (11)C18—H18B0.9700
C2—H20.9300C19—O21.415 (6)
C3—C41.356 (10)C19—C201.496 (8)
C3—H30.9300C19—H19A0.9700
C4—C51.381 (8)C19—H19B0.9700
C4—H40.9300C20—N11.340 (7)
C5—N41.328 (7)C20—C211.385 (8)
C5—C61.502 (9)C21—C221.360 (9)
C6—O11.430 (6)C21—H210.9300
C6—H6A0.9700C22—C231.377 (9)
C6—H6B0.9700C22—H220.9300
C7—O11.426 (7)C23—C241.370 (8)
C7—C81.483 (8)C23—H230.9300
C7—H7A0.9700C24—N11.342 (7)
C7—H7B0.9700C24—H240.9300
C8—N31.335 (7)Cl1—O71.239 (8)
C8—C91.386 (8)Cl1—O91.244 (8)
C9—C101.388 (10)Cl1—O101.313 (7)
C9—H90.9300Cl1—O81.389 (6)
C10—C111.376 (9)Cl2—O51.273 (7)
C10—H100.9300Cl2—O61.285 (8)
C11—C121.360 (8)Cl2—O41.360 (8)
C11—H110.9300Cl2—O31.409 (5)
C12—N31.353 (7)Cl3—Cu22.2511 (15)
C12—H120.9300Cl4—Cu12.2067 (14)
C13—C141.353 (8)Cu1—N31.968 (4)
C13—C151.386 (9)Cu1—O11.970 (3)
C13—H130.9300Cu1—N41.973 (4)
C14—N21.352 (7)Cu2—N21.970 (4)
C14—H140.9300Cu2—N11.972 (4)
C15—C161.367 (9)Cu2—O22.005 (4)
C15—H150.9300Cu2—O112.298 (4)
C16—C171.389 (8)O11—H11A0.8969
C16—H160.9300O11—H11B0.8995
C17—N21.336 (7)
N4—C1—C2120.2 (6)C20—C19—H19B110.1
N4—C1—H1119.9H19A—C19—H19B108.4
C2—C1—H1119.9N1—C20—C21120.4 (5)
C1—C2—C3119.1 (7)N1—C20—C19117.7 (5)
C1—C2—H2120.5C21—C20—C19121.9 (5)
C3—C2—H2120.5C22—C21—C20120.6 (6)
C4—C3—C2120.2 (6)C22—C21—H21119.7
C4—C3—H3119.9C20—C21—H21119.7
C2—C3—H3119.9C21—C22—C23118.5 (6)
C3—C4—C5118.6 (7)C21—C22—H22120.8
C3—C4—H4120.7C23—C22—H22120.8
C5—C4—H4120.7C24—C23—C22119.2 (6)
N4—C5—C4121.6 (6)C24—C23—H23120.4
N4—C5—C6117.1 (5)C22—C23—H23120.4
C4—C5—C6121.3 (6)N1—C24—C23122.1 (6)
O1—C6—C5107.2 (5)N1—C24—H24119.0
O1—C6—H6A110.3C23—C24—H24119.0
C5—C6—H6A110.3O7—Cl1—O9109.6 (11)
O1—C6—H6B110.3O7—Cl1—O10111.8 (7)
C5—C6—H6B110.3O9—Cl1—O10104.2 (8)
H6A—C6—H6B108.5O7—Cl1—O8108.2 (6)
O1—C7—C8108.0 (5)O9—Cl1—O8105.6 (7)
O1—C7—H7A110.1O10—Cl1—O8117.1 (6)
C8—C7—H7A110.1O5—Cl2—O6111.9 (9)
O1—C7—H7B110.1O5—Cl2—O4108.8 (9)
C8—C7—H7B110.1O6—Cl2—O4108.4 (7)
H7A—C7—H7B108.4O5—Cl2—O3109.3 (5)
N3—C8—C9121.3 (5)O6—Cl2—O3109.4 (5)
N3—C8—C7117.1 (5)O4—Cl2—O3108.9 (5)
C9—C8—C7121.6 (6)N3—Cu1—O180.97 (17)
C8—C9—C10119.2 (6)N3—Cu1—N4161.79 (19)
C8—C9—H9120.4O1—Cu1—N481.04 (17)
C10—C9—H9120.4N3—Cu1—Cl498.72 (13)
C11—C10—C9118.8 (6)O1—Cu1—Cl4173.09 (12)
C11—C10—H10120.6N4—Cu1—Cl498.80 (14)
C9—C10—H10120.6N2—Cu2—N1159.85 (19)
C12—C11—C10119.5 (6)N2—Cu2—O280.78 (17)
C12—C11—H11120.2N1—Cu2—O280.45 (16)
C10—C11—H11120.2N2—Cu2—Cl398.32 (14)
N3—C12—C11122.0 (6)N1—Cu2—Cl398.09 (13)
N3—C12—H12119.0O2—Cu2—Cl3165.86 (13)
C11—C12—H12119.0N2—Cu2—O1193.89 (17)
C14—C13—C15118.8 (6)N1—Cu2—O1192.93 (17)
C14—C13—H13120.6O2—Cu2—O1188.68 (16)
C15—C13—H13120.6Cl3—Cu2—O11105.46 (12)
N2—C14—C13122.7 (6)C20—N1—C24119.1 (5)
N2—C14—H14118.6C20—N1—Cu2115.3 (4)
C13—C14—H14118.6C24—N1—Cu2125.5 (4)
C16—C15—C13118.8 (6)C17—N2—C14119.1 (5)
C16—C15—H15120.6C17—N2—Cu2115.1 (4)
C13—C15—H15120.6C14—N2—Cu2125.8 (4)
C15—C16—C17120.2 (6)C8—N3—C12119.2 (5)
C15—C16—H16119.9C8—N3—Cu1115.0 (4)
C17—C16—H16119.9C12—N3—Cu1125.8 (4)
N2—C17—C16120.4 (6)C5—N4—C1120.3 (5)
N2—C17—C18118.3 (5)C5—N4—Cu1115.0 (4)
C16—C17—C18121.3 (6)C1—N4—Cu1124.6 (4)
O2—C18—C17107.8 (5)C7—O1—C6117.4 (5)
O2—C18—H18A110.2C7—O1—Cu1115.1 (3)
C17—C18—H18A110.2C6—O1—Cu1115.1 (3)
O2—C18—H18B110.2C19—O2—C18117.2 (4)
C17—C18—H18B110.2C19—O2—Cu2115.9 (3)
H18A—C18—H18B108.5C18—O2—Cu2115.2 (3)
O2—C19—C20107.9 (4)Cu2—O11—H11A94.6
O2—C19—H19A110.1Cu2—O11—H11B109.4
C20—C19—H19A110.1H11A—O11—H11B101.6
O2—C19—H19B110.1
N4—C1—C2—C30.5 (10)O11—Cu2—N2—C1796.4 (4)
C1—C2—C3—C41.4 (11)N1—Cu2—N2—C14166.6 (5)
C2—C3—C4—C51.7 (11)O2—Cu2—N2—C14171.9 (5)
C3—C4—C5—N41.1 (10)Cl3—Cu2—N2—C1422.4 (5)
C3—C4—C5—C6177.2 (6)O11—Cu2—N2—C1483.8 (5)
N4—C5—C6—O116.3 (7)C9—C8—N3—C120.3 (8)
C4—C5—C6—O1165.4 (5)C7—C8—N3—C12178.8 (5)
O1—C7—C8—N313.7 (7)C9—C8—N3—Cu1179.5 (4)
O1—C7—C8—C9167.1 (5)C7—C8—N3—Cu10.3 (6)
N3—C8—C9—C101.2 (9)C11—C12—N3—C80.2 (8)
C7—C8—C9—C10177.9 (6)C11—C12—N3—Cu1178.9 (4)
C8—C9—C10—C111.6 (10)O1—Cu1—N3—C89.1 (4)
C9—C10—C11—C121.2 (10)N4—Cu1—N3—C80.1 (8)
C10—C11—C12—N30.3 (10)Cl4—Cu1—N3—C8163.9 (4)
C15—C13—C14—N20.2 (10)O1—Cu1—N3—C12171.7 (5)
C14—C13—C15—C161.2 (10)N4—Cu1—N3—C12179.2 (5)
C13—C15—C16—C171.4 (10)Cl4—Cu1—N3—C1215.2 (5)
C15—C16—C17—N20.6 (9)C4—C5—N4—C10.1 (8)
C15—C16—C17—C18179.2 (6)C6—C5—N4—C1178.2 (5)
N2—C17—C18—O211.5 (7)C4—C5—N4—Cu1179.3 (5)
C16—C17—C18—O2168.8 (5)C6—C5—N4—Cu12.3 (6)
O2—C19—C20—N110.1 (7)C2—C1—N4—C50.1 (9)
O2—C19—C20—C21171.0 (5)C2—C1—N4—Cu1179.6 (5)
N1—C20—C21—C220.8 (9)N3—Cu1—N4—C50.5 (8)
C19—C20—C21—C22178.0 (6)O1—Cu1—N4—C58.5 (4)
C20—C21—C22—C233.2 (10)Cl4—Cu1—N4—C5164.5 (4)
C21—C22—C23—C242.7 (10)N3—Cu1—N4—C1180.0 (5)
C22—C23—C24—N10.3 (10)O1—Cu1—N4—C1170.9 (5)
C21—C20—N1—C242.1 (8)Cl4—Cu1—N4—C116.1 (5)
C19—C20—N1—C24179.0 (5)C8—C7—O1—C6161.6 (4)
C21—C20—N1—Cu2177.1 (4)C8—C7—O1—Cu121.1 (6)
C19—C20—N1—Cu21.8 (6)C5—C6—O1—C7163.5 (4)
C23—C24—N1—C202.7 (8)C5—C6—O1—Cu123.1 (5)
C23—C24—N1—Cu2176.4 (4)N3—Cu1—O1—C717.4 (4)
N2—Cu2—N1—C2012.5 (8)N4—Cu1—O1—C7159.8 (4)
O2—Cu2—N1—C209.0 (4)Cl4—Cu1—O1—C770.6 (10)
Cl3—Cu2—N1—C20156.7 (4)N3—Cu1—O1—C6158.8 (4)
O11—Cu2—N1—C2097.2 (4)N4—Cu1—O1—C618.4 (4)
N2—Cu2—N1—C24166.6 (5)Cl4—Cu1—O1—C670.8 (11)
O2—Cu2—N1—C24171.8 (5)C20—C19—O2—C18158.7 (5)
Cl3—Cu2—N1—C2422.4 (5)C20—C19—O2—Cu217.4 (6)
O11—Cu2—N1—C2483.7 (5)C17—C18—O2—C19159.6 (5)
C16—C17—N2—C140.5 (8)C17—C18—O2—Cu218.0 (6)
C18—C17—N2—C14179.8 (5)N2—Cu2—O2—C19157.4 (4)
C16—C17—N2—Cu2179.3 (4)N1—Cu2—O2—C1915.3 (4)
C18—C17—N2—Cu20.4 (7)Cl3—Cu2—O2—C1969.9 (6)
C13—C14—N2—C170.6 (9)O11—Cu2—O2—C19108.5 (4)
C13—C14—N2—Cu2179.1 (5)N2—Cu2—O2—C1815.2 (4)
N1—Cu2—N2—C1713.2 (8)N1—Cu2—O2—C18157.4 (4)
O2—Cu2—N2—C178.4 (4)Cl3—Cu2—O2—C1872.2 (6)
Cl3—Cu2—N2—C17157.4 (4)O11—Cu2—O2—C18109.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O5i0.902.052.725 (8)131
O11—H11B···O9ii0.901.922.787 (10)163
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuCl(C12H12N2O)][CuCl(C12H12N2O)(H2O)](ClO4)2
Mr815.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.997 (2), 12.882 (3), 12.913 (3)
α, β, γ (°)97.174 (3), 112.031 (3), 106.851 (3)
V3)1565.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.42 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.525, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
8530, 6009, 4063
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.185, 1.05
No. of reflections6009
No. of parameters411
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cl3—Cu22.2511 (15)Cu2—N21.970 (4)
Cl4—Cu12.2067 (14)Cu2—N11.972 (4)
Cu1—N31.968 (4)Cu2—O22.005 (4)
Cu1—O11.970 (3)Cu2—O112.298 (4)
Cu1—N41.973 (4)
N3—Cu1—O180.97 (17)N1—Cu2—O280.45 (16)
N3—Cu1—N4161.79 (19)N2—Cu2—Cl398.32 (14)
O1—Cu1—N481.04 (17)N1—Cu2—Cl398.09 (13)
N3—Cu1—Cl498.72 (13)O2—Cu2—Cl3165.86 (13)
O1—Cu1—Cl4173.09 (12)N2—Cu2—O1193.89 (17)
N4—Cu1—Cl498.80 (14)N1—Cu2—O1192.93 (17)
N2—Cu2—N1159.85 (19)O2—Cu2—O1188.68 (16)
N2—Cu2—O280.78 (17)Cl3—Cu2—O11105.46 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O5i0.902.052.725 (8)131.4
O11—H11B···O9ii0.901.922.787 (10)162.7
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Project of Scientific Studies Development of Shandong Provincial Education Department (grant No. J08LC51) and the Natural Science Foundation of Shandong Province (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. M. (2007). Acta Cryst. E63, m2241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. M. (2008a). Acta Cryst. E64, m1467.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, J. (2008b). Acta Cryst. E64, m1468.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds