organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(5-Methyl­furan-2-yl)methyl­ene]-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 6 July 2009; accepted 24 July 2009; online 29 July 2009)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C15H16O5. In each, the 1,3-dioxane ring is in an envelope conformation with the C atom common to the cyclo­hexane ring forming the flap. The dihedral angles between the five essentially planar [maximum deviations from the least-squares planes of 0.049 (3) and 0.042 (3) Å] atoms of the 1,3-dioxane ring and the furan ring in the two mol­ecules are 7.15 (1) and 6.80 (1)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the applications of spiro compounds, see: Yaozhong et al. (1998[Yaozhong, J., Song, X., Zhi, J., Jingen, D., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185-3189.]); Lian et al. (2008[Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.]); Wei et al. (2008[Wei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501-1514.]). For the crystal structure of 3-(furan-2-ylmethyl­ene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione, see: Zeng & Jian (2009[Zeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O5

  • Mr = 276.28

  • Monoclinic, P 21 /c

  • a = 19.314 (4) Å

  • b = 6.8289 (14) Å

  • c = 20.468 (4) Å

  • β = 97.04 (3)°

  • V = 2679.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.985

  • 21978 measured reflections

  • 6028 independent reflections

  • 3716 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.198

  • S = 1.02

  • 6028 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O4Bi 0.93 2.59 3.408 (3) 147
C1B—H1BA⋯O4Aii 0.93 2.50 3.376 (3) 157
C12B—H12B⋯O4Bi 0.97 2.53 3.420 (3) 152
C13A—H13A⋯O4Aii 0.97 2.54 3.405 (3) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Yaozhong et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity and have recently determined the crystal structure of 3-(furan-2-ylmethylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione, (Zeng & Jian, 2009).

The asymmetric unit of (I) is shown in Fig. 1. In both independent molecules, the 1,3-dioxane ring is in an envelope conformation with atoms C9A and C9B forming the flap in each. The mean planes of the other five essentially planar atoms (O5A/O6A/C6A—C8A and O5B/O6B/C6B—C8B) form dihedral angles of 7.15 (1)° and 6.80 (1)° with the furan ring (O2A/C1A-C4A and O2B/C1B-C4B). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the applications of spiro compounds, see: Yaozhong et al. (1998); Lian et al. (2008); Wei et al. (2008). For the crystal structure of 3-(furan-2-ylmethylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione, see: Zeng & Jian (2009).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in conc. sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 5-methylfuran-2-carbaldehyde (6.60 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an acetone-petroleum aether (2:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
3-[(5-Methylfuran-2-yl)methylene]-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C15H16O5F(000) = 1168
Mr = 276.28Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3716 reflections
a = 19.314 (4) Åθ = 3.1–27.5°
b = 6.8289 (14) ŵ = 0.10 mm1
c = 20.468 (4) ÅT = 293 K
β = 97.04 (3)°Block, yellow
V = 2679.2 (9) Å30.22 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6028 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2524
Tmin = 0.978, Tmax = 0.985k = 88
21978 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.119P)2]
where P = (Fo2 + 2Fc2)/3
6028 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H16O5V = 2679.2 (9) Å3
Mr = 276.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.314 (4) ŵ = 0.10 mm1
b = 6.8289 (14) ÅT = 293 K
c = 20.468 (4) Å0.22 × 0.18 × 0.15 mm
β = 97.04 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3716 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.049
21978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
6028 reflectionsΔρmin = 0.36 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O2A0.77282 (7)0.9079 (2)0.18291 (7)0.0240 (4)
O3A0.85666 (7)1.0679 (3)0.38985 (7)0.0302 (4)
O4A1.01152 (7)1.0476 (3)0.22791 (7)0.0298 (4)
O5A0.97036 (7)1.1039 (2)0.41380 (7)0.0266 (4)
O6A1.04784 (7)1.0940 (2)0.33323 (7)0.0250 (4)
C1A0.74943 (10)0.9542 (4)0.28658 (10)0.0246 (5)
H1AA0.75430.98050.33150.030*
C2A0.80226 (10)0.9507 (3)0.24675 (9)0.0226 (5)
C3A0.70337 (10)0.8848 (3)0.18383 (10)0.0241 (5)
C4A0.68697 (10)0.9107 (4)0.24655 (11)0.0264 (5)
H4AA0.64280.90120.26000.032*
C5A0.87528 (10)0.9763 (3)0.25215 (9)0.0223 (5)
H5AA0.89310.95590.21250.027*
C6A0.91304 (10)1.0628 (3)0.37011 (10)0.0234 (5)
C7A0.92562 (10)1.0240 (3)0.30207 (9)0.0227 (5)
C8A0.99672 (10)1.0523 (4)0.28365 (10)0.0244 (5)
C9A1.03783 (10)1.0380 (3)0.39939 (9)0.0225 (5)
C10A1.16592 (10)1.0837 (4)0.43581 (10)0.0294 (5)
H10A1.17621.11990.39220.035*
H10B1.19911.15010.46770.035*
C11A1.17412 (10)0.8647 (4)0.44459 (10)0.0295 (5)
H11A1.16980.83080.48990.035*
H11B1.22030.82630.43550.035*
C12A1.11918 (10)0.7519 (4)0.39880 (10)0.0265 (5)
H12C1.12370.61300.40820.032*
H12D1.12730.77240.35340.032*
C13A1.04505 (10)0.8192 (4)0.40769 (10)0.0252 (5)
H13A1.01170.75410.37550.030*
H13B1.03460.78240.45120.030*
C14A1.09154 (10)1.1511 (4)0.44459 (10)0.0275 (5)
H14C1.08341.13120.48990.033*
H14D1.08681.28990.43490.033*
C15A0.66067 (11)0.8365 (4)0.12100 (11)0.0323 (5)
H15A0.66590.93750.08930.049*
H15B0.61250.82690.12800.049*
H15C0.67580.71370.10490.049*
O2B0.72619 (7)0.4699 (2)0.32748 (7)0.0260 (4)
O3B0.65167 (7)0.3142 (3)0.11772 (7)0.0311 (4)
O4B0.48850 (7)0.3305 (3)0.27231 (7)0.0312 (4)
O5B0.53852 (7)0.2773 (3)0.08899 (7)0.0289 (4)
O6B0.45715 (7)0.2830 (3)0.16647 (7)0.0269 (4)
C1B0.81544 (10)0.4690 (4)0.26779 (11)0.0289 (5)
H1BA0.86040.47890.25620.035*
C2B0.75465 (10)0.4255 (4)0.22541 (11)0.0262 (5)
H2BA0.75190.39990.18050.031*
C3B0.79632 (10)0.4941 (4)0.32922 (11)0.0269 (5)
C4B0.69981 (10)0.4275 (3)0.26259 (10)0.0242 (5)
C5B0.62670 (10)0.4016 (3)0.25433 (10)0.0229 (5)
H5BA0.60710.41970.29320.027*
C6B0.50626 (10)0.3260 (4)0.21756 (10)0.0255 (5)
C7B0.57830 (10)0.3558 (3)0.20207 (10)0.0238 (5)
C8B0.59395 (10)0.3186 (4)0.13503 (10)0.0249 (5)
C9B0.46957 (10)0.3378 (4)0.10066 (10)0.0251 (5)
C10B0.34343 (11)0.2776 (4)0.06026 (11)0.0326 (6)
H10C0.31220.20520.02820.039*
H10D0.33190.24470.10370.039*
C11B0.41892 (11)0.2164 (4)0.05488 (11)0.0309 (5)
H11C0.42490.07890.06610.037*
H11D0.42880.23350.00990.037*
C12B0.45988 (10)0.5554 (4)0.09071 (10)0.0263 (5)
H12A0.47250.59160.04790.032*
H12B0.49050.62490.12400.032*
C13B0.38411 (10)0.6153 (4)0.09512 (10)0.0285 (5)
H13C0.37380.59740.13990.034*
H13D0.37830.75300.08420.034*
C14B0.33275 (11)0.4947 (4)0.04849 (10)0.0331 (6)
H14A0.28540.52960.05500.040*
H14B0.33900.52520.00330.040*
C15B0.83547 (11)0.5452 (4)0.39357 (12)0.0354 (6)
H15D0.82480.45250.42620.053*
H15E0.82250.67420.40610.053*
H15F0.88460.54210.39020.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2A0.0205 (6)0.0310 (10)0.0199 (7)0.0014 (6)0.0002 (6)0.0009 (6)
O3A0.0241 (7)0.0446 (12)0.0225 (7)0.0018 (7)0.0052 (6)0.0025 (7)
O4A0.0222 (7)0.0473 (12)0.0202 (7)0.0007 (7)0.0042 (6)0.0054 (7)
O5A0.0221 (7)0.0372 (11)0.0205 (7)0.0017 (6)0.0022 (6)0.0029 (6)
O6A0.0209 (6)0.0344 (10)0.0191 (7)0.0023 (6)0.0007 (6)0.0042 (6)
C1A0.0231 (9)0.0292 (14)0.0216 (10)0.0022 (9)0.0028 (8)0.0001 (8)
C2A0.0232 (9)0.0244 (13)0.0195 (9)0.0016 (8)0.0001 (8)0.0003 (8)
C3A0.0216 (9)0.0237 (13)0.0270 (10)0.0008 (8)0.0020 (9)0.0017 (8)
C4A0.0215 (9)0.0277 (14)0.0304 (11)0.0005 (9)0.0039 (9)0.0004 (9)
C5A0.0250 (9)0.0241 (13)0.0178 (9)0.0024 (8)0.0030 (8)0.0016 (8)
C6A0.0215 (9)0.0287 (14)0.0195 (9)0.0008 (8)0.0003 (8)0.0006 (8)
C7A0.0201 (9)0.0290 (14)0.0188 (9)0.0032 (8)0.0019 (8)0.0027 (8)
C8A0.0223 (9)0.0298 (14)0.0203 (10)0.0012 (9)0.0002 (8)0.0053 (8)
C9A0.0202 (9)0.0284 (13)0.0190 (9)0.0002 (8)0.0032 (8)0.0018 (8)
C10A0.0243 (10)0.0415 (16)0.0211 (10)0.0078 (9)0.0018 (9)0.0002 (9)
C11A0.0231 (9)0.0432 (16)0.0220 (10)0.0022 (9)0.0018 (9)0.0016 (9)
C12A0.0279 (10)0.0283 (14)0.0231 (10)0.0012 (9)0.0018 (9)0.0022 (9)
C13A0.0242 (9)0.0326 (14)0.0185 (9)0.0029 (9)0.0019 (8)0.0020 (8)
C14A0.0258 (10)0.0317 (15)0.0242 (10)0.0063 (9)0.0002 (9)0.0022 (9)
C15A0.0273 (10)0.0378 (16)0.0300 (11)0.0017 (10)0.0047 (9)0.0052 (10)
O2B0.0213 (7)0.0312 (10)0.0250 (7)0.0001 (6)0.0008 (6)0.0000 (6)
O3B0.0247 (7)0.0426 (12)0.0272 (8)0.0018 (7)0.0076 (6)0.0011 (7)
O4B0.0226 (7)0.0496 (12)0.0216 (7)0.0011 (7)0.0039 (6)0.0069 (7)
O5B0.0224 (7)0.0407 (11)0.0238 (7)0.0009 (7)0.0031 (6)0.0016 (7)
O6B0.0214 (7)0.0393 (11)0.0196 (7)0.0029 (6)0.0010 (6)0.0053 (6)
C1B0.0222 (10)0.0278 (14)0.0367 (12)0.0006 (9)0.0044 (9)0.0021 (10)
C2B0.0236 (9)0.0275 (14)0.0278 (11)0.0017 (9)0.0046 (9)0.0022 (9)
C3B0.0220 (9)0.0237 (13)0.0341 (11)0.0007 (8)0.0001 (9)0.0000 (9)
C4B0.0247 (10)0.0246 (13)0.0230 (10)0.0015 (8)0.0014 (9)0.0023 (8)
C5B0.0237 (9)0.0246 (13)0.0212 (9)0.0041 (8)0.0062 (8)0.0026 (8)
C6B0.0231 (9)0.0293 (14)0.0234 (10)0.0007 (9)0.0002 (9)0.0049 (9)
C7B0.0210 (9)0.0270 (13)0.0236 (10)0.0017 (8)0.0035 (8)0.0040 (8)
C8B0.0220 (9)0.0282 (14)0.0245 (10)0.0011 (8)0.0031 (9)0.0019 (9)
C9B0.0215 (9)0.0338 (14)0.0199 (9)0.0026 (9)0.0023 (8)0.0009 (9)
C10B0.0266 (10)0.0460 (17)0.0240 (10)0.0102 (10)0.0013 (9)0.0016 (10)
C11B0.0289 (10)0.0371 (16)0.0257 (10)0.0044 (10)0.0002 (9)0.0022 (10)
C12B0.0265 (10)0.0335 (14)0.0191 (9)0.0038 (9)0.0030 (9)0.0020 (9)
C13B0.0293 (10)0.0317 (15)0.0242 (10)0.0022 (9)0.0026 (9)0.0049 (9)
C14B0.0256 (10)0.0517 (18)0.0209 (10)0.0012 (10)0.0013 (9)0.0070 (10)
C15B0.0294 (11)0.0390 (17)0.0352 (12)0.0029 (10)0.0059 (10)0.0007 (11)
Geometric parameters (Å, º) top
O2A—C3A1.353 (2)O2B—C3B1.361 (2)
O2A—C2A1.391 (2)O2B—C4B1.393 (2)
O3A—C6A1.207 (2)O3B—C8B1.211 (2)
O4A—C8A1.210 (2)O4B—C6B1.212 (2)
O5A—C6A1.364 (2)O5B—C8B1.366 (2)
O5A—C9A1.443 (2)O5B—C9B1.442 (2)
O6A—C8A1.357 (2)O6B—C6B1.355 (2)
O6A—C9A1.443 (2)O6B—C9B1.446 (2)
C1A—C2A1.382 (3)C1B—C3B1.364 (3)
C1A—C4A1.404 (3)C1B—C2B1.403 (3)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C5A1.412 (3)C2B—C4B1.378 (3)
C3A—C4A1.371 (3)C2B—H2BA0.9300
C3A—C15A1.478 (3)C3B—C15B1.478 (3)
C4A—H4AA0.9300C4B—C5B1.412 (3)
C5A—C7A1.361 (3)C5B—C7B1.368 (3)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.467 (3)C6B—C7B1.478 (3)
C7A—C8A1.481 (3)C7B—C8B1.463 (3)
C9A—C13A1.508 (3)C9B—C12B1.508 (3)
C9A—C14A1.514 (3)C9B—C11B1.516 (3)
C10A—C11A1.512 (4)C10B—C14B1.512 (4)
C10A—C14A1.540 (3)C10B—C11B1.534 (3)
C10A—H10A0.9700C10B—H10C0.9700
C10A—H10B0.9700C10B—H10D0.9700
C11A—C12A1.534 (3)C11B—H11C0.9700
C11A—H11A0.9700C11B—H11D0.9700
C11A—H11B0.9700C12B—C13B1.533 (3)
C12A—C13A1.536 (3)C12B—H12A0.9700
C12A—H12C0.9700C12B—H12B0.9700
C12A—H12D0.9700C13B—C14B1.530 (3)
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—H14C0.9700C14B—H14A0.9700
C14A—H14D0.9700C14B—H14B0.9700
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C3A—O2A—C2A107.65 (15)C3B—O2B—C4B107.26 (16)
C6A—O5A—C9A118.84 (15)C8B—O5B—C9B119.22 (16)
C8A—O6A—C9A118.53 (15)C6B—O6B—C9B118.84 (15)
C2A—C1A—C4A107.20 (18)C3B—C1B—C2B107.22 (18)
C2A—C1A—H1AA126.4C3B—C1B—H1BA126.4
C4A—C1A—H1AA126.4C2B—C1B—H1BA126.4
C1A—C2A—O2A108.14 (16)C4B—C2B—C1B107.33 (19)
C1A—C2A—C5A138.96 (19)C4B—C2B—H2BA126.3
O2A—C2A—C5A112.90 (16)C1B—C2B—H2BA126.3
O2A—C3A—C4A109.96 (18)O2B—C3B—C1B109.97 (19)
O2A—C3A—C15A117.54 (17)O2B—C3B—C15B116.81 (18)
C4A—C3A—C15A132.49 (18)C1B—C3B—C15B133.19 (19)
C3A—C4A—C1A107.04 (18)C2B—C4B—O2B108.21 (17)
C3A—C4A—H4AA126.5C2B—C4B—C5B139.2 (2)
C1A—C4A—H4AA126.5O2B—C4B—C5B112.55 (17)
C7A—C5A—C2A134.69 (18)C7B—C5B—C4B134.40 (18)
C7A—C5A—H5AA112.7C7B—C5B—H5BA112.8
C2A—C5A—H5AA112.7C4B—C5B—H5BA112.8
O3A—C6A—O5A117.86 (18)O4B—C6B—O6B117.93 (17)
O3A—C6A—C7A125.73 (18)O4B—C6B—C7B125.12 (19)
O5A—C6A—C7A116.36 (16)O6B—C6B—C7B116.91 (17)
C5A—C7A—C6A124.74 (17)C5B—C7B—C8B124.97 (17)
C5A—C7A—C8A116.08 (18)C5B—C7B—C6B115.77 (18)
C6A—C7A—C8A119.01 (18)C8B—C7B—C6B119.03 (18)
O4A—C8A—O6A118.46 (17)O3B—C8B—O5B117.70 (18)
O4A—C8A—C7A124.77 (19)O3B—C8B—C7B125.61 (19)
O6A—C8A—C7A116.72 (17)O5B—C8B—C7B116.63 (16)
O5A—C9A—O6A109.72 (16)O5B—C9B—O6B110.01 (16)
O5A—C9A—C13A111.06 (16)O5B—C9B—C12B111.21 (17)
O6A—C9A—C13A110.32 (17)O6B—C9B—C12B110.41 (17)
O5A—C9A—C14A106.51 (17)O5B—C9B—C11B106.25 (17)
O6A—C9A—C14A106.11 (16)O6B—C9B—C11B105.43 (17)
C13A—C9A—C14A112.94 (18)C12B—C9B—C11B113.30 (18)
C11A—C10A—C14A111.55 (18)C14B—C10B—C11B111.61 (19)
C11A—C10A—H10A109.3C14B—C10B—H10C109.3
C14A—C10A—H10A109.3C11B—C10B—H10C109.3
C11A—C10A—H10B109.3C14B—C10B—H10D109.3
C14A—C10A—H10B109.3C11B—C10B—H10D109.3
H10A—C10A—H10B108.0H10C—C10B—H10D108.0
C10A—C11A—C12A111.68 (18)C9B—C11B—C10B110.70 (19)
C10A—C11A—H11A109.3C9B—C11B—H11C109.5
C12A—C11A—H11A109.3C10B—C11B—H11C109.5
C10A—C11A—H11B109.3C9B—C11B—H11D109.5
C12A—C11A—H11B109.3C10B—C11B—H11D109.5
H11A—C11A—H11B107.9H11C—C11B—H11D108.1
C11A—C12A—C13A111.25 (18)C9B—C12B—C13B111.01 (18)
C11A—C12A—H12C109.4C9B—C12B—H12A109.4
C13A—C12A—H12C109.4C13B—C12B—H12A109.4
C11A—C12A—H12D109.4C9B—C12B—H12B109.4
C13A—C12A—H12D109.4C13B—C12B—H12B109.4
H12C—C12A—H12D108.0H12A—C12B—H12B108.0
C9A—C13A—C12A110.95 (17)C14B—C13B—C12B111.74 (19)
C9A—C13A—H13A109.4C14B—C13B—H13C109.3
C12A—C13A—H13A109.4C12B—C13B—H13C109.3
C9A—C13A—H13B109.4C14B—C13B—H13D109.3
C12A—C13A—H13B109.4C12B—C13B—H13D109.3
H13A—C13A—H13B108.0H13C—C13B—H13D107.9
C9A—C14A—C10A110.81 (18)C10B—C14B—C13B111.28 (18)
C9A—C14A—H14C109.5C10B—C14B—H14A109.4
C10A—C14A—H14C109.5C13B—C14B—H14A109.4
C9A—C14A—H14D109.5C10B—C14B—H14B109.4
C10A—C14A—H14D109.5C13B—C14B—H14B109.4
H14C—C14A—H14D108.1H14A—C14B—H14B108.0
C3A—C15A—H15A109.5C3B—C15B—H15D109.5
C3A—C15A—H15B109.5C3B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C3A—C15A—H15C109.5C3B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···O3A0.932.262.878 (3)123
C4A—H4AA···O4Bi0.932.593.408 (3)147
C1B—H1BA···O4Aii0.932.503.376 (3)157
C2B—H2BA···O3B0.932.262.884 (3)124
C12B—H12B···O4Bi0.972.533.420 (3)152
C13A—H13A···O4Aii0.972.543.405 (3)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16O5
Mr276.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)19.314 (4), 6.8289 (14), 20.468 (4)
β (°) 97.04 (3)
V3)2679.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
21978, 6028, 3716
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.198, 1.02
No. of reflections6028
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O4Bi0.932.593.408 (3)147.4
C1B—H1BA···O4Aii0.932.503.376 (3)156.9
C12B—H12B···O4Bi0.972.533.420 (3)151.9
C13A—H13A···O4Aii0.972.543.405 (3)148.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501–1514.  CAS Google Scholar
First citationYaozhong, J., Song, X., Zhi, J., Jingen, D., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185–3189.  CrossRef Google Scholar
First citationZeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds