organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2020-o2021

Carvedilol di­hydrogen phosphate hemihydrate: a powder study

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and b`BION Ltd', 109 km. Kiev Highway, Obninsk 249032, Kaluga Region, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 14 July 2009; accepted 23 July 2009; online 29 July 2009)

In the cation of the title compound [systematic name: 3-(9H-carbazol-4-yl­oxy)-2-hydr­oxy-N-[2-(2-methoxy­phen­oxy)eth­yl]propan-1-aminium dihydrogen phosphate hemihydrate], C24H27N2O4+·H2PO4·0.5H2O, the mean planes of the tricyclic ring system and the benzene ring form a dihedral angle of 87.2 (2)°. In the crystal structure, the solvent water mol­ecule is situated on a twofold rotation axis linking two cations via O—H⋯O and N—H⋯O hydrogen bonds. The anions contribute to the formation O—H⋯O and N—H⋯O hydrogen bonds between the anions and cations, which consolidate the crystal packing.

Related literature

For the synthesis of the title compound, claimed as Form I, see: Brook et al. (2005[Brook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent No. 20050240027A1.]). For the crystal structures of two polymorphs of the carvedilol free base, see: Chen et al. (1998[Chen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325-328.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542-o544.]). For details of the indexing algorithm, see: Visser (1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]). The methodology of bond-restrained Rietveld refinement used in this study was the same as described by Chernyshev et al. (2003[Chernyshev, V. V., Machon, D., Fitch, A. N., Zaitsev, S. A., Yatsenko, A. V., Shmakov, A. N. & Weber, H.-P. (2003). Acta Cryst. B59, 787-793.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N2O4+·H2PO4·0.5H2O

  • Mr = 513.47

  • Monoclinic, C 2/c

  • a = 26.600 (2) Å

  • b = 12.3767 (12) Å

  • c = 16.5101 (15) Å

  • β = 106.662 (11)°

  • V = 5207.2 (8) Å3

  • Z = 8

  • Cu Kα1 radiation

  • μ = 1.38 mm−1

  • T = 295 K

  • Specimen shape: flat sheet

  • 15 × 1 × 1 mm

  • Specimen prepared at 101 kPa

  • Specimen prepared at 295 K

  • Particle morphology: no specific habit, light grey

Data collection
  • Guinier G670 image plate camera

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Specimen mounted in transmission mode

  • Scan method: continuous

  • 2θmin = 5.0, 2θmax = 75.0°

  • Increment in 2θ = 0.01°

Refinement
  • Rp = 0.026

  • Rwp = 0.035

  • Rexp = 0.014

  • RB = 0.064

  • S = 2.43

  • Wavelength of incident radiation: 1.54059 Å

  • Excluded region(s): none

  • Profile function: split-type pseudo-Voigt (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.])

  • 1346 reflections

  • 157 parameters

  • 125 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: March-Dollase (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]); direction of preferred orientation 100, texture parameter r = 1.038 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19A⋯O32 0.90 2.06 2.93 (2) 165
N19—H19B⋯O36 0.90 2.18 3.04 (2) 159
N9—H9⋯O35i 0.86 1.87 2.72 (3) 168
O18—H18⋯O32ii 0.82 2.42 3.15 (2) 148
O18—H18⋯O35ii 0.82 2.46 3.02 (2) 126
O33—H33⋯O35ii 0.82 1.77 2.53 (2) 153
O34—H34⋯O32iii 0.82 1.87 2.58 (2) 144
O36—H36⋯O22 0.85 2.34 2.887 (15) 122
O36—H36⋯O29 0.85 2.00 2.80 (2) 155
C21—H21B⋯O34iii 0.97 2.24 2.91 (2) 125
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x, y, -z+{\script{3\over 2}}]; (iii) -x, -y+2, -z+2.

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Earlier, the crystal structures of two polymorphs of carvedilol free base have been reported (Chen et al., 1998; Yathirajan et al., 2007). Herein we report the crystal structure of the title compound (I), also known as carvedilol dihydrogen phosphate hemihydrate, Form I (Brook et al., 2005).

In (I) (Fig. 1), all bond lengths and angles in the cation are comparable with those reported earlier for two monoclinic polymorphs of carvedilol free base (Chen et al., 1998; Yathirajan et al., 2007). The mean planes of tricycle and benzene ring form a dihedral angle of 87.2 (2)°. The crystalline water molecule is situated on a twofold rotational axis linking two cations via O—H···O and N—H···O hydrogen bonds (Table 1). The anions contribute to formation O—H···O and N—H···O hydrogen bonds (Table 1) between the anions and cations giving rise to three-dimensional hydrogen-bonding network.

Related literature top

For the synthesis of the title compound, claimed as Form I, see: Brook et al. (2005). For the crystal structures of two polymorphs of carvedilol free base, see: Chen et al. (1998); Yathirajan et al. (2007). For details of the indexing algorithm, see: Visser (1969). The methodology of bond-restrained Rietveld refinement used in this study was the same as described by Chernyshev et al. (2003).

Experimental top

The title compound was synthesized in accordance with the known procedure, invented by Brook et al. (2005) for Form I.

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M20=35, using the first 30 peak positions. The space group C2/c was chosen on the basis of systematic extinction rules and confirmed later by the crystal structure solution. The structure of (I) was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in details elsewhere (Chernyshev et al., 2003) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). All non-H atoms were refined isotropically: two overall Uiso parameters were refined for the cation, and two Uiso parameters were refined for the anion - one for P and one for all O atoms. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Computing details top

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering and 40% displacement spheres. H atoms are not shown.
[Figure 2] Fig. 2. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.
3-(9H-carbazol-4-yloxy)-2-hydroxy-N-[2-(2- methoxyphenoxy)ethyl]propan-1-aminium dihydrogen phosphate hemihydrate] top
Crystal data top
C24H27N2O4+·H2PO4·0.5H2OF(000) = 2168
Mr = 513.47Dx = 1.310 Mg m3
Monoclinic, C2/cCu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -C 2ycµ = 1.38 mm1
a = 26.600 (2) ÅT = 295 K
b = 12.3767 (12) ÅParticle morphology: no specific habit
c = 16.5101 (15) Ålight grey
β = 106.662 (11)°flat_sheet, 15 × 1 mm
V = 5207.2 (8) Å3Specimen preparation: Prepared at 295 K and 101 kPa
Z = 8
Data collection top
Guinier G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 5.00°, 2θmax = 75.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle157 parameters
Rp = 0.026125 restraints
Rwp = 0.03527 constraints
Rexp = 0.014H-atom parameters not refined
RBragg = 0.064Weighting scheme based on measured s.u.'s
χ2 = 5.928(Δ/σ)max = 0.004
7001 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 100, texture parameter r = 1.038(5)
Crystal data top
C24H27N2O4+·H2PO4·0.5H2OV = 5207.2 (8) Å3
Mr = 513.47Z = 8
Monoclinic, C2/cCu Kα1 radiation, λ = 1.54059 Å
a = 26.600 (2) ŵ = 1.38 mm1
b = 12.3767 (12) ÅT = 295 K
c = 16.5101 (15) Åflat_sheet, 15 × 1 mm
β = 106.662 (11)°
Data collection top
Guinier G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 5.00°, 2θmax = 75.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0267001 data points
Rwp = 0.035157 parameters
Rexp = 0.014125 restraints
RBragg = 0.064H-atom parameters not refined
χ2 = 5.928
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1090 (10)0.7439 (16)0.8662 (14)0.096 (9)*
H1A0.12180.67230.85850.115*
H1B0.13390.77710.91460.115*
C20.1044 (9)0.8122 (14)0.7871 (12)0.096 (9)*
H20.11100.88880.80120.115*
C30.1405 (11)0.7694 (13)0.7371 (13)0.096 (9)*
H3A0.12890.69800.71530.115*
H3B0.13860.81670.68950.115*
C40.2317 (10)0.7415 (15)0.7495 (11)0.078 (7)*
C50.2335 (8)0.7825 (16)0.6713 (14)0.078 (7)*
H50.20690.82730.64020.094*
C60.2761 (11)0.7553 (13)0.6398 (12)0.078 (7)*
H60.27450.77660.58510.094*
C70.3201 (9)0.6987 (17)0.6859 (15)0.078 (7)*
H70.35020.69220.66840.094*
C80.3156 (9)0.6522 (16)0.7609 (13)0.078 (7)*
N90.3515 (8)0.5885 (13)0.8183 (10)0.078 (7)*
H90.37970.56220.81070.094*
C100.3351 (9)0.5734 (15)0.8899 (14)0.078 (7)*
C110.3572 (11)0.5123 (16)0.9629 (15)0.078 (7)*
H110.38900.47660.97030.094*
C120.3304 (12)0.5062 (17)1.0244 (15)0.078 (7)*
H120.34540.46821.07410.094*
C130.2814 (10)0.5561 (14)1.0128 (12)0.078 (7)*
H130.26460.55221.05500.094*
C140.2580 (9)0.6116 (13)0.9379 (14)0.078 (7)*
H140.22430.63930.92800.094*
C150.2854 (11)0.6256 (15)0.8773 (13)0.078 (7)*
C160.2737 (10)0.6768 (16)0.7952 (12)0.078 (7)*
O170.1930 (7)0.7639 (11)0.7893 (9)0.078 (7)*
O180.0509 (8)0.7940 (12)0.7362 (9)0.096 (9)*
H180.04790.83420.69570.144*
N190.0560 (8)0.7353 (13)0.8820 (11)0.096 (9)*
H19A0.04350.80220.88510.115*
H19B0.03370.70150.83790.115*
C200.0576 (10)0.6750 (16)0.9617 (14)0.096 (9)*
H20A0.08070.71241.00980.115*
H20B0.07180.60320.95920.115*
C210.0031 (11)0.6657 (15)0.9737 (12)0.096 (9)*
H21A0.00510.63431.02830.115*
H21B0.01330.73620.97010.115*
O220.0260 (7)0.5974 (11)0.9071 (8)0.096 (9)*
C230.0747 (10)0.5587 (16)0.9079 (13)0.096 (9)*
C240.0925 (12)0.4644 (14)0.8587 (14)0.096 (9)*
C250.1401 (9)0.4201 (15)0.8616 (15)0.096 (9)*
H250.15240.35770.83090.115*
C260.1699 (10)0.4678 (16)0.9099 (12)0.096 (9)*
H260.20320.44120.90620.115*
C270.1502 (9)0.5542 (17)0.9631 (14)0.096 (9)*
H270.16770.57961.00060.115*
C280.1033 (11)0.6023 (14)0.9590 (12)0.096 (9)*
H280.09110.66400.99070.115*
O290.0584 (8)0.4261 (12)0.8162 (9)0.096 (9)*
C300.0784 (11)0.3728 (16)0.7357 (14)0.096 (9)*
H30A0.04970.35140.71500.144*
H30B0.10080.42150.69610.144*
H30C0.09810.31010.74240.144*
P310.0045 (5)1.0448 (8)0.8733 (7)0.063 (6)*
O320.0094 (8)0.9380 (12)0.9182 (10)0.124 (11)*
O330.0409 (8)1.0822 (11)0.8416 (11)0.124 (11)*
H330.03731.05240.79600.186*
O340.0127 (8)1.1325 (13)0.9331 (10)0.124 (11)*
H340.02441.10160.96780.186*
O350.0536 (9)1.0330 (11)0.7999 (9)0.124 (11)*
O360.00000.5716 (11)0.75000.076 (7)*
H360.01030.53100.78360.114*
Geometric parameters (Å, º) top
P31—O351.51 (2)C12—C131.40 (4)
P31—O341.52 (2)C13—C141.40 (3)
P31—O331.52 (2)C14—C151.41 (3)
P31—O321.509 (18)C15—C161.45 (3)
O17—C41.40 (3)C20—C211.52 (4)
O17—C31.42 (3)C23—C281.40 (3)
O18—C21.45 (3)C23—C241.42 (3)
O22—C231.38 (3)C24—C251.39 (4)
O22—C211.43 (2)C25—C261.41 (3)
O29—C241.38 (3)C26—C271.39 (3)
O29—C301.44 (3)C27—C281.40 (4)
O18—H180.82C1—H1A0.97
O33—H330.82C1—H1B0.97
O34—H340.82C2—H20.98
O36—H360.85C3—H3A0.97
O36—H36i0.85C3—H3B0.97
N9—C101.39 (3)C5—H50.93
N9—C81.38 (3)C6—H60.93
N19—C11.51 (3)C7—H70.93
N19—C201.50 (3)C11—H110.93
N9—H90.86C12—H120.93
N19—H19A0.90C13—H130.93
N19—H19B0.90C14—H140.93
C1—C21.53 (3)C20—H20B0.97
C2—C31.53 (3)C20—H20A0.97
C4—C161.41 (3)C21—H21B0.97
C4—C51.40 (3)C21—H21A0.97
C5—C61.42 (4)C25—H250.93
C6—C71.39 (3)C26—H260.93
C7—C81.40 (3)C27—H270.93
C8—C161.42 (4)C28—H280.93
C10—C151.43 (4)C30—H30A0.96
C10—C111.40 (3)C30—H30B0.96
C11—C121.40 (4)C30—H30C0.96
O34—P31—O35109.7 (13)O29—C24—C25128.2 (18)
O32—P31—O35110.0 (11)C24—C25—C26121.3 (19)
O32—P31—O33109.2 (13)C25—C26—C27121 (2)
O32—P31—O34111.5 (11)C26—C27—C28118 (2)
O33—P31—O34106.4 (12)C23—C28—C27120.8 (19)
O33—P31—O35110.0 (12)N19—C1—H1B109.77
C3—O17—C4117.0 (16)N19—C1—H1A109.78
C21—O22—C23120.0 (18)H1A—C1—H1B108.18
C24—O29—C30120 (2)C2—C1—H1A109.73
C2—O18—H18103.23C2—C1—H1B109.71
P31—O33—H33106.53C1—C2—H2111.50
P31—O34—H34105.88C3—C2—H2111.46
H36—O36—H36i107.52O18—C2—H2111.57
C8—N9—C10110 (2)O17—C3—H3A109.57
C1—N19—C20113.1 (18)C2—C3—H3A109.48
C10—N9—H9125.12C2—C3—H3B109.48
C8—N9—H9125.17O17—C3—H3B109.59
C1—N19—H19B108.95H3A—C3—H3B108.18
H19A—N19—H19B107.79C4—C5—H5120.24
C20—N19—H19B108.92C6—C5—H5120.11
C1—N19—H19A108.90C7—C6—H6118.16
C20—N19—H19A109.00C5—C6—H6118.07
N19—C1—C2109.6 (19)C6—C7—H7122.62
C1—C2—C3111.1 (17)C8—C7—H7122.59
O18—C2—C1103.5 (18)C10—C11—H11120.69
O18—C2—C3107.3 (16)C12—C11—H11120.78
O17—C3—C2110.5 (16)C11—C12—H12119.21
O17—C4—C16116.1 (17)C13—C12—H12119.26
C5—C4—C16118 (2)C12—C13—H13120.07
O17—C4—C5125.8 (19)C14—C13—H13120.07
C4—C5—C6120 (2)C13—C14—H14120.01
C5—C6—C7123.8 (19)C15—C14—H14119.97
C6—C7—C8115 (2)C21—C20—H20A109.42
N9—C8—C16108.4 (18)C21—C20—H20B109.44
C7—C8—C16123 (2)H20A—C20—H20B107.96
N9—C8—C7128 (2)N19—C20—H20A109.38
N9—C10—C11131 (2)N19—C20—H20B109.33
N9—C10—C15108.6 (18)O22—C21—H21A110.63
C11—C10—C15121 (2)C20—C21—H21B110.63
C10—C11—C12119 (2)O22—C21—H21B110.54
C11—C12—C13122 (2)C20—C21—H21A110.55
C12—C13—C14120 (2)H21A—C21—H21B108.76
C13—C14—C15120 (2)C26—C25—H25119.37
C10—C15—C16106 (2)C24—C25—H25119.29
C14—C15—C16135 (2)C25—C26—H26119.69
C10—C15—C14119.1 (19)C27—C26—H26119.59
C4—C16—C8120.1 (18)C26—C27—H27120.79
C4—C16—C15133 (2)C28—C27—H27120.75
C8—C16—C15107 (2)C27—C28—H28119.57
N19—C20—C21111.3 (19)C23—C28—H28119.65
O22—C21—C20105.7 (18)O29—C30—H30B109.47
O22—C23—C28123.0 (19)O29—C30—H30C109.44
C24—C23—C28121 (2)H30A—C30—H30C109.53
O22—C23—C24116 (2)H30B—C30—H30C109.45
C23—C24—C25117 (2)H30A—C30—H30B109.43
O29—C24—C23114 (2)O29—C30—H30A109.50
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O320.902.062.93 (2)165
N19—H19B···O360.902.183.04 (2)159
N9—H9···O35ii0.861.872.72 (3)168
O18—H18···O32i0.822.423.15 (2)148
O18—H18···O35i0.822.463.02 (2)126
O33—H33···O35i0.821.772.53 (2)153
O34—H34···O32iii0.821.872.58 (2)144
O36—H36···O220.852.342.887 (15)122
O36—H36···O290.852.002.80 (2)155
C21—H21B···O34iii0.972.242.91 (2)125
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC24H27N2O4+·H2PO4·0.5H2O
Mr513.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)26.600 (2), 12.3767 (12), 16.5101 (15)
β (°) 106.662 (11)
V3)5207.2 (8)
Z8
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)1.38
Specimen shape, size (mm)Flat_sheet, 15 × 1
Data collection
DiffractometerGuinier G670
diffractometer
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 5.00 2θmax = 75.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.026, Rwp = 0.035, Rexp = 0.014, RBragg = 0.064, χ2 = 5.928
No. of data points7001
No. of parameters157
No. of restraints125
H-atom treatmentH-atom parameters not refined

Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O320.902.062.93 (2)165
N19—H19B···O360.902.183.04 (2)159
N9—H9···O35i0.861.872.72 (3)168
O18—H18···O32ii0.822.423.15 (2)148
O18—H18···O35ii0.822.463.02 (2)126
O33—H33···O35ii0.821.772.53 (2)153
O34—H34···O32iii0.821.872.58 (2)144
O36—H36···O220.852.342.887 (15)122
O36—H36···O290.852.002.80 (2)155
C21—H21B···O34iii0.972.242.91 (2)125
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+3/2; (iii) x, y+2, z+2.
 

Acknowledgements

VVC and YAV acknowledge the International Centre for Diffraction Data (ICDD) for supporting this study (GiA 03–06).

References

First citationBrook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent No. 20050240027A1.  Google Scholar
First citationChen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325–328.  CAS Google Scholar
First citationChernyshev, V. V., Machon, D., Fitch, A. N., Zaitsev, S. A., Yatsenko, A. V., Shmakov, A. N. & Weber, H.-P. (2003). Acta Cryst. B59, 787–793.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationYathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542–o544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2020-o2021
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds