organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Benzotriazol-2-yl)-4-methyl­phenyl di­phenyl­phosphinate

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 21 July 2009; accepted 28 July 2009; online 31 July 2009)

In the title mol­ecule, C25H20N3O2P, the dihedral angle between the mean planes of the benzotriazol ring system and the N-bonded benzene ring is 45.8 (2)°. All but one of the angles at the P atom show slight distortions from an ideal tetra­hedral geometry.

Related literature

For background to the use of 2-(2H-benzotriazol-2H-yl)phenol (BTP-H) derivatives, see: Li et al. (2009[Li, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m670.]); Tsai et al. (2009[Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.]). For related structures, see: Al-Farhan (1992[Al-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687-689.]); Cheng et al. (2007[Cheng, Y.-H., Weng, C.-M. & Hong, F.-E. (2007). Tetrahedron, 63, 12277-12285.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N3O2P

  • Mr = 425.41

  • Orthorhombic, P c a 21

  • a = 12.7691 (7) Å

  • b = 9.4064 (5) Å

  • c = 18.6362 (10) Å

  • V = 2238.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART-1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.974

  • 11920 measured reflections

  • 3684 independent reflections

  • 3343 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.05

  • 3684 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1412 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Selected bond angles (°)

O2—P—O1 115.53 (10)
O2—P—C14 113.48 (8)
O1—P—C14 100.15 (8)
O2—P—C20 112.37 (9)
O1—P—C20 105.04 (8)
C14—P—C20 109.30 (8)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(2H-benzotriazol-2H-yl)phenol (BTP-H) derivatives are widely used as ultraviolet (UV) absorbers for the protection of commercially important synthetic plastics and fibers against the UV light in industry. In terms of coordination chemistry, the benzotriazol-phenolate group can provide N, O-bidentate chelation to stabilize the transition metal or main group metal complexes. For instance, our group has successfully synthesized and structural characterized the Pd complex (II) with 4-methyl-2-(2H-benzotriazol-2-yl)-phenolate ligands (Tsai et al., 2009). Recently, we also reported the synthesis and crystal structure of an Al(III) complex with the 4-methyl-2-(2H-benzotriazol-2-yl)-phenolate ligand (Li et al., 2009). Most recently, Cheng et al. (2007) reported some palladium complexes of monodentate phosphinite ligands and these complexes in the presence of Pd(OAc)2 have been demonstrated effectively to catalyze Suzuki–Miyaura cross-coupling reactions. Therefore, our group is interested in the synthesis and preparation of the phosphinite functionalized benzotriazol-phenolate ligands derived from BTP-H. Here, we report the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparation of metal complexes.

The molecule of (I) is composed of a benzotriazol-phenolate moiety and a diphenylphosphine oxide functionalized group (Fig. 1). The dihedral angle between the planes of the benzotriazole moiety and the benzene ring of the phenoxy group is 45.8 (2)°. The P atom is bonded one O atom of the phosphine oxide, one phenoxy O atom and two C atoms from two phenyl groups, forming a slightly distorted tetrahedral environment. The P-O and P=O bond distances bond distances are similar to those found in the crystal structure of triphenyphosphine oxide (Al-Farhan, 1992).

Related literature top

For background to the use of 2-(2H-benzotriazol-2H-yl)phenol (BTP-H) derivatives in industry as ultraviolet (UV) absorbers for the protection of synthetic plastics and fibers, see: Li et al. (2009); Tsai et al. (2009). For related structures, see: Al-Farhan (1992); Cheng et al. (2007).

Experimental top

The title compound I was synthesized by the following procedure (Fig. 2): To a rapidly stirred solution of 4-methyl-2-(2H-benzotriazol-2-yl)phenol (2.48 g, 10.0 mmol) in toluene (20 ml), Ph2PCl (1.8 ml, 10.0 mmol) and NEt3 (20.0 mmol, 2.02 g) was slowly added. The mixed solution was stirred at 363 K for 18 h. Subsequently, the HNEt3Cl salt was filtered and the resulting solution was dried under reduced pressure. The resulting oily product was re-dissolved in MeOH (20 ml) and H2O2 (1 ml) was added. The final solution was stirred at room temperature for another 1 h and the volatile components were removed in vacuo. The residue was extracted with ethyl acetate (50 ml) and the extract was dried under vacuum to give oily, white solids. Colorless crystals were obtained on cooling the saturated Et2O solution at 253 K overnight. 1H NMR (CDCl3, p.p.m.): δ 7.10–7.97 (17H, m, ArH), 2.35 (3H, s, CH3).

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and 0.96 Å with Uiso(H) = 1.2 and 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The synthetic procedure of the title compound.
2-(2H-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate top
Crystal data top
C25H20N3O2PF(000) = 888
Mr = 425.41Dx = 1.262 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6495 reflections
a = 12.7691 (7) Åθ = 2.7–26.0°
b = 9.4064 (5) ŵ = 0.15 mm1
c = 18.6362 (10) ÅT = 296 K
V = 2238.4 (2) Å3Block, colourless
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART-1000 CCD
diffractometer
3684 independent reflections
Radiation source: fine-focus sealed tube3343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.963, Tmax = 0.974k = 1111
11920 measured reflectionsl = 1922
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3684 reflectionsΔρmax = 0.14 e Å3
280 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1412 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C25H20N3O2PV = 2238.4 (2) Å3
Mr = 425.41Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.7691 (7) ŵ = 0.15 mm1
b = 9.4064 (5) ÅT = 296 K
c = 18.6362 (10) Å0.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART-1000 CCD
diffractometer
3684 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3343 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.034
11920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.20 e Å3
3684 reflectionsAbsolute structure: Flack (1983), 1412 Friedel pairs
280 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.78562 (3)0.27388 (4)0.41236 (3)0.04851 (13)
O10.74629 (11)0.25123 (13)0.49386 (7)0.0523 (3)
O20.89556 (10)0.23744 (14)0.39862 (10)0.0724 (4)
N10.54417 (13)0.30745 (18)0.54995 (9)0.0573 (4)
N20.58778 (12)0.21611 (16)0.59589 (8)0.0510 (3)
N30.56809 (15)0.23649 (17)0.66558 (9)0.0617 (4)
C10.73324 (14)0.11822 (19)0.52534 (11)0.0498 (4)
C20.65289 (15)0.10047 (19)0.57421 (10)0.0536 (4)
C30.63716 (18)0.0309 (2)0.60682 (12)0.0641 (5)
H3B0.58230.04220.63910.077*
C40.7020 (2)0.1451 (2)0.59187 (13)0.0675 (6)
C50.78319 (19)0.1244 (2)0.54483 (14)0.0710 (6)
H5A0.82830.19960.53510.085*
C60.80000 (17)0.0052 (2)0.51143 (12)0.0652 (5)
H6A0.85580.01630.47980.078*
C70.49173 (14)0.3965 (2)0.59453 (10)0.0543 (4)
C80.4308 (2)0.5185 (3)0.57796 (13)0.0768 (6)
H8A0.42090.54920.53100.092*
C90.3876 (2)0.5879 (3)0.63507 (16)0.0861 (7)
H9A0.34710.66830.62650.103*
C100.4020 (2)0.5427 (3)0.70636 (15)0.0862 (7)
H10A0.37090.59430.74320.103*
C110.45980 (19)0.4263 (3)0.72317 (13)0.0762 (6)
H11A0.46830.39630.77040.091*
C120.50631 (15)0.3531 (2)0.66534 (11)0.0561 (4)
C130.6860 (3)0.2874 (3)0.6283 (2)0.0984 (9)
H13A0.73770.35350.61140.148*
H13B0.69290.27600.67930.148*
H13C0.61730.32270.61730.148*
C140.75764 (14)0.45832 (18)0.40115 (10)0.0511 (4)
C150.66460 (14)0.5202 (2)0.42229 (12)0.0612 (5)
H15A0.61440.46580.44590.073*
C160.64533 (18)0.6626 (2)0.40869 (16)0.0746 (6)
H16A0.58220.70360.42260.089*
C170.7204 (3)0.7429 (2)0.37445 (17)0.0840 (8)
H17A0.70860.83910.36630.101*
C180.8118 (3)0.6822 (3)0.35251 (19)0.0982 (9)
H18A0.86090.73670.32810.118*
C190.83227 (19)0.5408 (3)0.36614 (16)0.0811 (7)
H19A0.89560.50080.35200.097*
C200.69692 (13)0.17140 (17)0.35845 (9)0.0460 (4)
C210.73139 (19)0.1249 (2)0.29154 (12)0.0636 (6)
H21A0.79850.14700.27570.076*
C220.6643 (2)0.0451 (3)0.24858 (12)0.0791 (7)
H22A0.68650.01530.20350.095*
C230.5668 (2)0.0102 (2)0.27184 (15)0.0770 (6)
H23A0.52340.04490.24300.092*
C240.53189 (18)0.0559 (2)0.33777 (13)0.0677 (5)
H24A0.46530.03100.35350.081*
C250.59558 (14)0.1389 (2)0.38062 (11)0.0562 (4)
H25A0.57080.17310.42430.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0399 (2)0.0488 (2)0.0569 (3)0.00062 (15)0.0029 (2)0.0003 (2)
O10.0566 (7)0.0499 (6)0.0504 (7)0.0003 (5)0.0023 (6)0.0000 (5)
O20.0446 (7)0.0726 (9)0.0998 (14)0.0035 (6)0.0074 (7)0.0013 (8)
N10.0617 (9)0.0667 (10)0.0436 (8)0.0101 (8)0.0017 (7)0.0031 (7)
N20.0576 (9)0.0532 (8)0.0424 (8)0.0008 (6)0.0003 (6)0.0025 (6)
N30.0772 (11)0.0662 (10)0.0416 (9)0.0011 (8)0.0019 (8)0.0047 (7)
C10.0529 (10)0.0484 (10)0.0481 (10)0.0013 (7)0.0086 (8)0.0012 (8)
C20.0621 (10)0.0524 (10)0.0462 (10)0.0023 (8)0.0080 (8)0.0007 (8)
C30.0749 (13)0.0586 (12)0.0588 (12)0.0026 (9)0.0006 (9)0.0065 (9)
C40.0864 (14)0.0510 (11)0.0650 (14)0.0023 (9)0.0146 (11)0.0061 (10)
C50.0842 (14)0.0547 (11)0.0742 (15)0.0183 (10)0.0125 (12)0.0007 (10)
C60.0687 (12)0.0643 (12)0.0625 (13)0.0107 (9)0.0018 (10)0.0021 (10)
C70.0533 (10)0.0600 (10)0.0498 (10)0.0030 (8)0.0007 (8)0.0018 (8)
C80.0810 (13)0.0845 (15)0.0650 (13)0.0261 (12)0.0004 (12)0.0052 (12)
C90.0862 (16)0.0871 (16)0.0849 (18)0.0310 (13)0.0016 (14)0.0089 (14)
C100.0905 (17)0.0927 (17)0.0752 (17)0.0148 (14)0.0108 (13)0.0277 (14)
C110.0877 (16)0.0905 (17)0.0504 (12)0.0048 (13)0.0065 (11)0.0092 (11)
C120.0598 (10)0.0610 (11)0.0476 (10)0.0026 (8)0.0029 (8)0.0012 (8)
C130.124 (2)0.0571 (13)0.114 (2)0.0010 (14)0.0021 (19)0.0205 (14)
C140.0516 (8)0.0477 (8)0.0540 (11)0.0075 (7)0.0029 (8)0.0012 (8)
C150.0549 (10)0.0556 (10)0.0731 (14)0.0019 (7)0.0007 (9)0.0058 (10)
C160.0793 (13)0.0602 (11)0.0842 (15)0.0131 (10)0.0135 (13)0.0024 (12)
C170.110 (2)0.0502 (12)0.0916 (19)0.0074 (12)0.0226 (15)0.0083 (12)
C180.112 (2)0.0664 (14)0.116 (3)0.0274 (15)0.0132 (18)0.0180 (15)
C190.0705 (13)0.0671 (14)0.106 (2)0.0147 (10)0.0195 (13)0.0097 (13)
C200.0529 (9)0.0382 (8)0.0467 (9)0.0036 (7)0.0034 (7)0.0001 (7)
C210.0804 (16)0.0569 (12)0.0534 (13)0.0099 (10)0.0133 (10)0.0009 (9)
C220.122 (2)0.0656 (14)0.0500 (12)0.0125 (14)0.0011 (13)0.0161 (11)
C230.0982 (17)0.0576 (12)0.0752 (15)0.0024 (11)0.0260 (14)0.0107 (11)
C240.0624 (12)0.0676 (13)0.0733 (14)0.0109 (9)0.0138 (10)0.0027 (11)
C250.0527 (9)0.0622 (11)0.0536 (10)0.0032 (8)0.0018 (8)0.0064 (8)
Geometric parameters (Å, º) top
P—O21.4675 (14)C11—C121.410 (3)
P—O11.6138 (15)C11—H11A0.9300
P—C141.7835 (18)C13—H13A0.9600
P—C201.7948 (18)C13—H13B0.9600
O1—C11.392 (2)C13—H13C0.9600
N1—N21.335 (2)C14—C151.380 (3)
N1—C71.357 (2)C14—C191.391 (3)
N2—N31.337 (2)C15—C161.385 (3)
N2—C21.427 (2)C15—H15A0.9300
N3—C121.351 (3)C16—C171.377 (4)
C1—C21.382 (3)C16—H16A0.9300
C1—C61.387 (3)C17—C181.362 (4)
C2—C31.392 (3)C17—H17A0.9300
C3—C41.385 (3)C18—C191.379 (4)
C3—H3B0.9300C18—H18A0.9300
C4—C51.371 (4)C19—H19A0.9300
C4—C131.515 (3)C20—C251.392 (3)
C5—C61.385 (3)C20—C211.393 (3)
C5—H5A0.9300C21—C221.392 (4)
C6—H6A0.9300C21—H21A0.9300
C7—C121.394 (3)C22—C231.359 (4)
C7—C81.420 (3)C22—H22A0.9300
C8—C91.365 (4)C23—C241.376 (4)
C8—H8A0.9300C23—H23A0.9300
C9—C101.407 (4)C24—C251.381 (3)
C9—H9A0.9300C24—H24A0.9300
C10—C111.357 (4)C25—H25A0.9300
C10—H10A0.9300
O2—P—O1115.53 (10)N3—C12—C7108.62 (16)
O2—P—C14113.48 (8)N3—C12—C11129.8 (2)
O1—P—C14100.15 (8)C7—C12—C11121.60 (19)
O2—P—C20112.37 (9)C4—C13—H13A109.5
O1—P—C20105.04 (8)C4—C13—H13B109.5
C14—P—C20109.30 (8)H13A—C13—H13B109.5
C1—O1—P123.55 (12)C4—C13—H13C109.5
N2—N1—C7102.17 (15)H13A—C13—H13C109.5
N1—N2—N3116.91 (16)H13B—C13—H13C109.5
N1—N2—C2123.51 (16)C15—C14—C19119.22 (18)
N3—N2—C2119.59 (15)C15—C14—P123.30 (13)
N2—N3—C12102.88 (15)C19—C14—P117.40 (16)
C2—C1—C6119.13 (19)C14—C15—C16120.55 (19)
C2—C1—O1118.37 (16)C14—C15—H15A119.7
C6—C1—O1122.45 (18)C16—C15—H15A119.7
C1—C2—C3120.14 (18)C17—C16—C15119.5 (2)
C1—C2—N2121.79 (16)C17—C16—H16A120.3
C3—C2—N2117.97 (18)C15—C16—H16A120.3
C4—C3—C2121.0 (2)C18—C17—C16120.3 (2)
C4—C3—H3B119.5C18—C17—H17A119.8
C2—C3—H3B119.5C16—C17—H17A119.8
C5—C4—C3118.1 (2)C17—C18—C19120.8 (2)
C5—C4—C13120.9 (2)C17—C18—H18A119.6
C3—C4—C13121.0 (3)C19—C18—H18A119.6
C4—C5—C6122.0 (2)C18—C19—C14119.6 (2)
C4—C5—H5A119.0C18—C19—H19A120.2
C6—C5—H5A119.0C14—C19—H19A120.2
C5—C6—C1119.7 (2)C25—C20—C21119.38 (18)
C5—C6—H6A120.2C25—C20—P122.57 (13)
C1—C6—H6A120.2C21—C20—P118.05 (15)
N1—C7—C12109.42 (16)C22—C21—C20119.3 (2)
N1—C7—C8129.50 (19)C22—C21—H21A120.3
C12—C7—C8121.07 (18)C20—C21—H21A120.3
C9—C8—C7116.0 (2)C23—C22—C21120.7 (2)
C9—C8—H8A122.0C23—C22—H22A119.7
C7—C8—H8A122.0C21—C22—H22A119.7
C8—C9—C10122.6 (2)C22—C23—C24120.4 (2)
C8—C9—H9A118.7C22—C23—H23A119.8
C10—C9—H9A118.7C24—C23—H23A119.8
C11—C10—C9122.2 (2)C23—C24—C25120.1 (2)
C11—C10—H10A118.9C23—C24—H24A119.9
C9—C10—H10A118.9C25—C24—H24A119.9
C10—C11—C12116.5 (2)C24—C25—C20119.98 (19)
C10—C11—H11A121.7C24—C25—H25A120.0
C12—C11—H11A121.7C20—C25—H25A120.0
O2—P—O1—C169.76 (16)N1—C7—C12—N30.0 (2)
C14—P—O1—C1167.96 (14)C8—C7—C12—N3179.2 (2)
C20—P—O1—C154.64 (15)N1—C7—C12—C11179.55 (19)
C7—N1—N2—N30.5 (2)C8—C7—C12—C111.2 (3)
C7—N1—N2—C2179.47 (16)C10—C11—C12—N3179.2 (2)
N1—N2—N3—C120.5 (2)C10—C11—C12—C71.3 (3)
C2—N2—N3—C12179.50 (16)O2—P—C14—C15169.14 (18)
P—O1—C1—C2145.53 (15)O1—P—C14—C1545.41 (19)
P—O1—C1—C636.9 (2)C20—P—C14—C1564.59 (19)
C6—C1—C2—C32.4 (3)O2—P—C14—C1914.0 (2)
O1—C1—C2—C3179.93 (17)O1—P—C14—C19137.76 (18)
C6—C1—C2—N2174.01 (18)C20—P—C14—C19112.24 (19)
O1—C1—C2—N23.7 (3)C19—C14—C15—C160.2 (3)
N1—N2—C2—C147.2 (3)P—C14—C15—C16176.57 (17)
N3—N2—C2—C1132.8 (2)C14—C15—C16—C170.7 (4)
N1—N2—C2—C3136.33 (19)C15—C16—C17—C181.6 (4)
N3—N2—C2—C343.7 (2)C16—C17—C18—C192.1 (5)
C1—C2—C3—C40.9 (3)C17—C18—C19—C141.6 (5)
N2—C2—C3—C4175.64 (18)C15—C14—C19—C180.6 (4)
C2—C3—C4—C51.0 (3)P—C14—C19—C18176.3 (2)
C2—C3—C4—C13179.0 (2)O2—P—C20—C25151.46 (15)
C3—C4—C5—C61.4 (4)O1—P—C20—C2525.08 (17)
C13—C4—C5—C6179.3 (3)C14—P—C20—C2581.63 (17)
C4—C5—C6—C10.1 (4)O2—P—C20—C2129.44 (18)
C2—C1—C6—C52.0 (3)O1—P—C20—C21155.82 (14)
O1—C1—C6—C5179.60 (18)C14—P—C20—C2197.47 (16)
N2—N1—C7—C120.33 (19)C25—C20—C21—C221.0 (3)
N2—N1—C7—C8178.8 (2)P—C20—C21—C22179.91 (17)
N1—C7—C8—C9179.6 (2)C20—C21—C22—C231.2 (3)
C12—C7—C8—C90.6 (3)C21—C22—C23—C241.4 (4)
C7—C8—C9—C100.0 (4)C22—C23—C24—C250.6 (4)
C8—C9—C10—C110.2 (5)C23—C24—C25—C202.7 (3)
C9—C10—C11—C120.8 (4)C21—C20—C25—C242.9 (3)
N2—N3—C12—C70.3 (2)P—C20—C25—C24178.04 (16)
N2—N3—C12—C11179.8 (2)

Experimental details

Crystal data
Chemical formulaC25H20N3O2P
Mr425.41
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.7691 (7), 9.4064 (5), 18.6362 (10)
V3)2238.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
11920, 3684, 3343
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05
No. of reflections3684
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20
Absolute structureFlack (1983), 1412 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O2—P—O1115.53 (10)O2—P—C20112.37 (9)
O2—P—C14113.48 (8)O1—P—C20105.04 (8)
O1—P—C14100.15 (8)C14—P—C20109.30 (8)
 

Acknowledgements

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97–2113-M-033–005-MY2) and in part from the project of the specific research fields in the Chung Yuan Christian University, Taiwan (No. CYCU-97-CR—CH).

References

First citationAl-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687–689.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Y.-H., Weng, C.-M. & Hong, F.-E. (2007). Tetrahedron, 63, 12277–12285.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds