inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

CsMgPO4

aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01601 Kyiv, Ukraine, and bSTC `Institute for Single Crystals', NAS of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine
*Correspondence e-mail: Strutynska_N@bigmir.net

(Received 26 June 2009; accepted 1 July 2009; online 4 July 2009)

Caesium magnesium orthophosphate is built up from MgO4 and PO4 tetra­hedra (both with . m. symmetry) linked together by corners, forming a three-dimensional framework. The Cs atoms have .m. site symmetry and are located in hexa­gonal channels running along the a- and b-axis directions.

Related literature

For the properties of double phosphates AIBIIPO4 (AI = alkali metal; BII = Ca, Sr, Ba, Zn, Cd, Pb) such as ferroelectric and non-linear optical behaviour, see: Blum et al. (1984[Blum, D., Peuzin, J. C. & Henry, J. Y. (1984). Ferroelectrics, 61, 265-279.]); Elouadi et al. (1984[Elouadi, B., Elammari, L. & Ravez, J. (1984). Ferroelectrics, 56, 1021-1024.]); Sawada et al. (2003[Sawada, A., Azumi, T., Ono, T., Aoyagi, S. & Kuroiwa, Y. (2003). Ferroelectrics, 291, 3-10.]). Several polymorphs have been found among orthophosphates containing Cs and divalent metals, see: Blum et al. (1986[Blum, D., Durif, A. & Averbuch-Pouchot, M. T. (1986). Ferroelectrics, 69, 283-292.]) for CsZnPO4. In contrast, CsMnPO4 occurs in only one type, see: Yakubovich et al. (1990[Yakubovich, O. V., Simonov, M. A. & Mel'nikov, O. K. (1990). Z. Kristallogr. 35, 42-46.]). The title compound is isotypic with the Pnma form of CsZnPO4. For related structures, see: Yakubovich et al. (1990[Yakubovich, O. V., Simonov, M. A. & Mel'nikov, O. K. (1990). Z. Kristallogr. 35, 42-46.]); Blum et al. (1986[Blum, D., Durif, A. & Averbuch-Pouchot, M. T. (1986). Ferroelectrics, 69, 283-292.]); Zaripov et al. (2008[Zaripov, A. R., Asabina, E. A., Pet'kov, V. I., Kurazhkovskaya, V. S., Stefanovich, S. Yu. & Rovny, S. I. (2008). Russ. J. Inorg. Chem. 53, 861-866.]).

Experimental

Crystal data
  • CsMgPO4

  • Mr = 252.19

  • Orthorhombic, P n m a

  • a = 8.9327 (2) Å

  • b = 5.5277 (2) Å

  • c = 9.6487 (3) Å

  • V = 476.43 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.13 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.413, Tmax = 0.503

  • 8753 measured reflections

  • 1137 independent reflections

  • 874 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.047

  • S = 1.00

  • 1137 reflections

  • 41 parameters

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—O2 3.1951 (9)
Cs1—O2i 3.2166 (9)
Cs1—O3ii 3.4476 (11)
Cs1—O1i 3.5224 (11)
Cs1—O1ii 3.6496 (11)
Cs1—O3iii 3.6968 (18)
Mg1—O1 1.8847 (13)
Mg1—O3iv 1.8932 (13)
Mg1—O2v 1.9228 (8)
P1—O1 1.5056 (13)
P1—O3 1.5138 (13)
P1—O2 1.5249 (8)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Double phosphates AIBIIPO4 (AI = alkali metal; BII = Ca, Sr, Ba, Zn, Cd, Pb) exhibit important properties such as ferroelectric and nonlinear optical behaviour (Blum et al., 1984; Elouadi et al., 1984; Sawada et al., 2003). Among some orthophosphates containing Cs and divalent metals, several polymorphs have been found. For instance, CsZnPO4 occurs in a monoclinic (space group P21/a) and two orthorhombic types (space groups Pna21 and Pnma) (Blum et al., 1986). In contrast, CsMnPO4 occurs in only one type (space group Pna21) (Yakubovich et al., 1990). CsMgPO4, reported here, is isotypic with the Pnma form of CsZnPO4.

Except for O2 (8d), all atoms are in special positions (4c) (Fig. 1). Each MgO4 tetrahedron is linked with four PO4 tetrahedra via common vertices, resulting in a three-dimensional framework with two types of hexagonal channels, filled by Cs atoms, along the a and b directions (Fig. 2). With a cut-off distance of 3.7 Å, the Cs atoms are 11-coordinate. In general, the principles of crystal structure building are equivalent to those in CsMIIPO4 (MII = Mn, Zn) (Yakubovich et al., 1990; Blum et al., 1986) and CsLi0.5Al0.5PO4 (Zapirov et al., 2008).

Related literature top

For the properties of double phosphates AIBIIPO4 (AI = alkali metal; BII = Ca, Sr, Ba, Zn, Cd, Pb) such as ferroelectric and non-linearoptical behaviour, see: Blum et al. (1984); Elouadi et al. (1984); Sawada et al. (2003). Several polymorphs have been found among orthophosphates containing Cs and divalent metals, see: Blum et al. (1986) for CsZnPO4. In contrast, CsMnPO4 occurs in only one type, see: Yakubovich et al. (1990). The title compound is isotypic with the Pnma form of CsZnPO4. For related structures, see: Yakubovich et al., 1990); Blum et al., 1986); Zaripov et al. (2008).

Experimental top

In the course of investigating the Cs2O–MgO–Bi2O3–P2O5 system, the starting components CsPO3 (3.0 g), MgO (0.113 g) and Bi2O3 (0.652 g) were finely ground and melted in a platinum crucible at 1273 K. The melt was kept at this temperature over 2 h to reach homogeneity and then cooled at a rate of 30 K h-1 to 993 K. After the melt was cooled to room temperature and treated with a small amount of deionized water, colorless needle-shaped crystals were isolated. X-ray powder diffraction showed that CsMgPO4 is the only crystalline product.

Refinement top

The deepest hole and the highest peak are 0.67 Å and 0.65 Å, respectively, from Cs1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. View of CsMgPO4 with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Formation of hexagonal channels along a and b directions in CsMgPO4 (PO4, pink; MgO4, yellow; Cs, blue).
Caesium magnesium orthophosphate top
Crystal data top
CsMgPO4F(000) = 456
Mr = 252.19Dx = 3.516 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8753 reflections
a = 8.9327 (2) Åθ = 3.1–35.0°
b = 5.5277 (2) ŵ = 8.13 mm1
c = 9.6487 (3) ÅT = 293 K
V = 476.43 (3) Å3Prism, colorless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1137 independent reflections
Radiation source: fine-focus sealed tube874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 35.0°, θmin = 3.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.413, Tmax = 0.503k = 88
8753 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0265P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.018
S = 1.00Δρmax = 1.23 e Å3
1137 reflectionsΔρmin = 1.02 e Å3
41 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0211 (4)
Crystal data top
CsMgPO4V = 476.43 (3) Å3
Mr = 252.19Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.9327 (2) ŵ = 8.13 mm1
b = 5.5277 (2) ÅT = 293 K
c = 9.6487 (3) Å0.12 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1137 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
874 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 0.503Rint = 0.027
8753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02141 parameters
wR(F2) = 0.0470 restraints
S = 1.00Δρmax = 1.23 e Å3
1137 reflectionsΔρmin = 1.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.497176 (11)0.250.703332 (10)0.02472 (2)
Mg10.32166 (5)0.250.08109 (5)0.01434 (11)
P10.20302 (4)0.250.41474 (4)0.01345 (7)
O10.26034 (19)0.250.26799 (13)0.0590 (6)
O20.26291 (11)0.02604 (13)0.48850 (9)0.0328 (2)
O30.03356 (14)0.250.41501 (19)0.0345 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02161 (4)0.02632 (5)0.02623 (4)00.00031 (4)0
Mg10.01301 (19)0.0133 (2)0.0168 (2)00.00166 (17)0
P10.01272 (13)0.01259 (14)0.01505 (14)00.00207 (12)0
O10.0594 (11)0.1014 (17)0.0162 (7)00.0121 (7)0
O20.0239 (4)0.0190 (4)0.0555 (6)0.0002 (3)0.0016 (4)0.0156 (4)
O30.0121 (4)0.0286 (6)0.0629 (10)00.0003 (6)0
Geometric parameters (Å, º) top
Cs1—O23.1951 (9)Mg1—Cs1xiii4.1402 (4)
Cs1—O2i3.1951 (9)P1—O11.5056 (13)
Cs1—O2ii3.2166 (9)P1—O31.5138 (13)
Cs1—O2iii3.2166 (9)P1—O2i1.5249 (8)
Cs1—O3iv3.4476 (11)P1—O21.5249 (8)
Cs1—O3v3.4476 (11)P1—Cs1ix3.8727 (3)
Cs1—O1vi3.5224 (11)P1—Cs1xiii3.8727 (3)
Cs1—O1ii3.5224 (11)P1—Cs1vi4.0136 (3)
Cs1—O1v3.6496 (11)P1—Cs1ii4.0136 (3)
Cs1—O1iv3.6496 (11)P1—Cs1xiv4.1184 (4)
Cs1—O3vii3.6968 (18)O1—Cs1vi3.5224 (11)
Cs1—Mg1vi3.8189 (4)O1—Cs1ii3.5224 (11)
Mg1—O11.8847 (13)O1—Cs1ix3.6496 (11)
Mg1—O3viii1.8932 (13)O1—Cs1xiii3.6496 (11)
Mg1—O2ix1.9228 (8)O2—Mg1v1.9228 (8)
Mg1—O2x1.9228 (8)O2—Cs1ii3.2166 (9)
Mg1—Cs1vi3.8189 (4)O3—Mg1xii1.8932 (13)
Mg1—Cs1ii3.8189 (4)O3—Cs1ix3.4476 (11)
Mg1—Cs1xi3.9678 (5)O3—Cs1xiii3.4476 (11)
Mg1—Cs1xii3.9916 (5)O3—Cs1xiv3.6968 (18)
Mg1—Cs1ix4.1402 (4)
O2—Cs1—O2i45.59 (3)O1—Mg1—Cs1ix61.80 (3)
O2—Cs1—O2ii83.06 (3)O3viii—Mg1—Cs1ix133.01 (2)
O2i—Cs1—O2ii104.291 (19)O2ix—Mg1—Cs1ix48.11 (3)
O2—Cs1—O2iii104.291 (19)O2x—Mg1—Cs1ix113.07 (3)
O2i—Cs1—O2iii83.06 (3)Cs1vi—Mg1—Cs1ix128.277 (13)
O2ii—Cs1—O2iii56.64 (3)Cs1ii—Mg1—Cs1ix69.709 (5)
O2—Cs1—O3iv130.00 (3)Cs1xi—Mg1—Cs1ix122.243 (9)
O2i—Cs1—O3iv91.24 (3)Cs1xii—Mg1—Cs1ix72.323 (7)
O2ii—Cs1—O3iv140.73 (3)O1—Mg1—Cs1xiii61.80 (3)
O2iii—Cs1—O3iv90.78 (3)O3viii—Mg1—Cs1xiii133.01 (2)
O2—Cs1—O3v91.24 (3)O2ix—Mg1—Cs1xiii113.07 (3)
O2i—Cs1—O3v130.00 (3)O2x—Mg1—Cs1xiii48.11 (3)
O2ii—Cs1—O3v90.78 (3)Cs1vi—Mg1—Cs1xiii69.709 (5)
O2iii—Cs1—O3v140.73 (3)Cs1ii—Mg1—Cs1xiii128.277 (14)
O3iv—Cs1—O3v106.58 (5)Cs1xi—Mg1—Cs1xiii122.243 (9)
O2—Cs1—O1vi139.27 (2)Cs1xii—Mg1—Cs1xiii72.323 (7)
O2i—Cs1—O1vi98.61 (3)Cs1ix—Mg1—Cs1xiii83.758 (9)
O2ii—Cs1—O1vi90.44 (3)O1—P1—O3109.98 (10)
O2iii—Cs1—O1vi42.55 (2)O1—P1—O2i108.64 (5)
O3iv—Cs1—O1vi51.20 (3)O3—P1—O2i110.49 (5)
O3v—Cs1—O1vi129.16 (3)O1—P1—O2108.64 (5)
O2—Cs1—O1ii98.61 (3)O3—P1—O2110.49 (5)
O2i—Cs1—O1ii139.27 (2)O2i—P1—O2108.56 (7)
O2ii—Cs1—O1ii42.55 (2)O1—P1—Cs1116.78 (7)
O2iii—Cs1—O1ii90.44 (3)O3—P1—Cs1133.24 (7)
O3iv—Cs1—O1ii129.16 (3)O2i—P1—Cs154.54 (3)
O3v—Cs1—O1ii51.20 (3)O2—P1—Cs154.54 (3)
O1vi—Cs1—O1ii103.38 (4)O1—P1—Cs1ix70.23 (4)
O2—Cs1—O1v53.46 (2)O3—P1—Cs1ix62.56 (4)
O2i—Cs1—O1v89.52 (3)O2i—P1—Cs1ix170.83 (4)
O2ii—Cs1—O1v99.15 (2)O2—P1—Cs1ix80.12 (3)
O2iii—Cs1—O1v151.35 (2)Cs1—P1—Cs1ix134.428 (4)
O3iv—Cs1—O1v117.11 (3)O1—P1—Cs1xiii70.23 (4)
O3v—Cs1—O1v40.66 (3)O3—P1—Cs1xiii62.56 (4)
O1vi—Cs1—O1v165.554 (5)O2i—P1—Cs1xiii80.12 (3)
O1ii—Cs1—O1v77.288 (3)O2—P1—Cs1xiii170.83 (4)
O2—Cs1—O1iv89.52 (3)Cs1—P1—Cs1xiii134.428 (4)
O2i—Cs1—O1iv53.46 (2)Cs1ix—P1—Cs1xiii91.069 (8)
O2ii—Cs1—O1iv151.35 (2)O1—P1—Cs1vi60.41 (4)
O2iii—Cs1—O1iv99.15 (2)O3—P1—Cs1vi131.89 (3)
O3iv—Cs1—O1iv40.66 (3)O2i—P1—Cs1vi48.65 (4)
O3v—Cs1—O1iv117.11 (3)O2—P1—Cs1vi117.22 (4)
O1vi—Cs1—O1iv77.288 (3)Cs1—P1—Cs1vi75.434 (6)
O1ii—Cs1—O1iv165.554 (5)Cs1ix—P1—Cs1vi130.546 (10)
O1v—Cs1—O1iv98.45 (4)Cs1xiii—P1—Cs1vi70.558 (4)
O2—Cs1—O3vii134.74 (2)O1—P1—Cs1ii60.41 (4)
O2i—Cs1—O3vii134.74 (2)O3—P1—Cs1ii131.89 (3)
O2ii—Cs1—O3vii120.97 (2)O2i—P1—Cs1ii117.22 (4)
O2iii—Cs1—O3vii120.97 (2)O2—P1—Cs1ii48.65 (4)
O3iv—Cs1—O3vii54.33 (3)Cs1—P1—Cs1ii75.434 (6)
O3v—Cs1—O3vii54.33 (3)Cs1ix—P1—Cs1ii70.558 (4)
O1vi—Cs1—O3vii82.40 (2)Cs1xiii—P1—Cs1ii130.546 (10)
O1ii—Cs1—O3vii82.40 (2)Cs1vi—P1—Cs1ii87.043 (8)
O1v—Cs1—O3vii83.40 (2)O1—P1—Cs1xiv173.36 (7)
O1iv—Cs1—O3vii83.40 (2)O3—P1—Cs1xiv63.38 (7)
O2—Cs1—Mg1vi155.689 (15)O2i—P1—Cs1xiv74.87 (4)
O2i—Cs1—Mg1vi110.517 (14)O2—P1—Cs1xiv74.87 (4)
O2ii—Cs1—Mg1vi111.987 (18)Cs1—P1—Cs1xiv69.857 (6)
O2iii—Cs1—Mg1vi71.807 (16)Cs1ix—P1—Cs1xiv105.375 (7)
O3iv—Cs1—Mg1vi29.64 (2)Cs1xiii—P1—Cs1xiv105.375 (7)
O3v—Cs1—Mg1vi106.93 (3)Cs1vi—P1—Cs1xiv123.498 (7)
O1vi—Cs1—Mg1vi29.40 (2)Cs1ii—P1—Cs1xiv123.498 (7)
O1ii—Cs1—Mg1vi105.34 (2)P1—O1—Mg1177.02 (12)
O1v—Cs1—Mg1vi136.22 (2)P1—O1—Cs1vi97.77 (4)
O1iv—Cs1—Mg1vi68.03 (2)Mg1—O1—Cs1vi84.06 (4)
O3vii—Cs1—Mg1vi54.563 (11)P1—O1—Cs1ii97.77 (4)
O1—Mg1—O3viii105.76 (8)Mg1—O1—Cs1ii84.06 (4)
O1—Mg1—O2ix109.29 (4)Cs1vi—O1—Cs1ii103.38 (4)
O3viii—Mg1—O2ix113.71 (4)P1—O1—Cs1ix86.93 (5)
O1—Mg1—O2x109.29 (4)Mg1—O1—Cs1ix91.12 (4)
O3viii—Mg1—O2x113.71 (4)Cs1vi—O1—Cs1ix174.41 (4)
O2ix—Mg1—O2x105.04 (6)Cs1ii—O1—Cs1ix78.860 (3)
O1—Mg1—Cs1vi66.55 (3)P1—O1—Cs1xiii86.93 (5)
O3viii—Mg1—Cs1vi64.25 (3)Mg1—O1—Cs1xiii91.12 (4)
O2ix—Mg1—Cs1vi173.66 (3)Cs1vi—O1—Cs1xiii78.860 (3)
O2x—Mg1—Cs1vi81.10 (3)Cs1ii—O1—Cs1xiii174.41 (4)
O1—Mg1—Cs1ii66.55 (3)Cs1ix—O1—Cs1xiii98.45 (4)
O3viii—Mg1—Cs1ii64.25 (3)P1—O2—Mg1v136.32 (7)
O2ix—Mg1—Cs1ii81.10 (3)P1—O2—Cs1102.59 (4)
O2x—Mg1—Cs1ii173.66 (3)Mg1v—O2—Cs1105.27 (4)
Cs1vi—Mg1—Cs1ii92.725 (11)P1—O2—Cs1ii110.51 (4)
O1—Mg1—Cs1xi173.62 (6)Mg1v—O2—Cs1ii98.78 (3)
O3viii—Mg1—Cs1xi67.86 (6)Cs1—O2—Cs1ii96.94 (3)
O2ix—Mg1—Cs1xi74.24 (3)P1—O3—Mg1xii178.96 (13)
O2x—Mg1—Cs1xi74.24 (3)P1—O3—Cs1ix94.51 (5)
Cs1vi—Mg1—Cs1xi109.444 (9)Mg1xii—O3—Cs1ix86.11 (4)
Cs1ii—Mg1—Cs1xi109.444 (9)P1—O3—Cs1xiii94.51 (5)
O1—Mg1—Cs1xii116.54 (5)Mg1xii—O3—Cs1xiii86.11 (4)
O3viii—Mg1—Cs1xii137.70 (6)Cs1ix—O3—Cs1xiii106.58 (5)
O2ix—Mg1—Cs1xii52.79 (3)P1—O3—Cs1xiv95.14 (8)
O2x—Mg1—Cs1xii52.79 (3)Mg1xii—O3—Cs1xiv83.82 (6)
Cs1vi—Mg1—Cs1xii133.015 (6)Cs1ix—O3—Cs1xiv125.67 (3)
Cs1ii—Mg1—Cs1xii133.015 (6)Cs1xiii—O3—Cs1xiv125.67 (3)
Cs1xi—Mg1—Cs1xii69.840 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1/2, y, z+3/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y, z1/2; (x) x+1/2, y+1/2, z1/2; (xi) x, y, z1; (xii) x1/2, y, z+1/2; (xiii) x+1/2, y+1, z1/2; (xiv) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaCsMgPO4
Mr252.19
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)8.9327 (2), 5.5277 (2), 9.6487 (3)
V3)476.43 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.13
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.413, 0.503
No. of measured, independent and
observed [I > 2σ(I)] reflections
8753, 1137, 874
Rint0.027
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.00
No. of reflections1137
No. of parameters41
Δρmax, Δρmin (e Å3)1.23, 1.02

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Cs1—O23.1951 (9)Mg1—O11.8847 (13)
Cs1—O2i3.2166 (9)Mg1—O3iv1.8932 (13)
Cs1—O3ii3.4476 (11)Mg1—O2v1.9228 (8)
Cs1—O1i3.5224 (11)P1—O11.5056 (13)
Cs1—O1ii3.6496 (11)P1—O31.5138 (13)
Cs1—O3iii3.6968 (18)P1—O21.5249 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y, z1/2.
 

Acknowledgements

The authors acknowledge the ICDD for financial support (grant No. 03–02).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlum, D., Durif, A. & Averbuch-Pouchot, M. T. (1986). Ferroelectrics, 69, 283–292.  CrossRef CAS Google Scholar
First citationBlum, D., Peuzin, J. C. & Henry, J. Y. (1984). Ferroelectrics, 61, 265–279.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationElouadi, B., Elammari, L. & Ravez, J. (1984). Ferroelectrics, 56, 1021–1024.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSawada, A., Azumi, T., Ono, T., Aoyagi, S. & Kuroiwa, Y. (2003). Ferroelectrics, 291, 3–10.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V., Simonov, M. A. & Mel'nikov, O. K. (1990). Z. Kristallogr. 35, 42–46.  CAS Google Scholar
First citationZaripov, A. R., Asabina, E. A., Pet'kov, V. I., Kurazhkovskaya, V. S., Stefanovich, S. Yu. & Rovny, S. I. (2008). Russ. J. Inorg. Chem. 53, 861–866.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds