inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­gallium(III) trinitrate trihydrate

aDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca

(Received 9 July 2009; accepted 16 July 2009; online 22 July 2009)

The title compound, [Ga(H2O)6](NO3)3·3H2O, is isostructural to other known MIII nitrate hydrates (M = Al, Cr, Fe). The structure contains two distinct octa­hedral Ga(OH2)6 units (each of [\overline{1}] symmetry) which are involved in inter­molecular hydrogen bonding with the three nitrate anions and three water mol­ecules within the asymmetric unit.

Related literature

For the the aluminium analogue, see: Lazar, Ribár, Divjaković & Mészáros (1991[Lazar, D., Ribár, B. & Prelesnik, B. (1991). Acta Cryst. C47, 2282-2285.]). For the chromium analogue, see: Lazar, Ribár & Prelesnik (1991[Lazar, D., Ribár, B., Divjaković, V. & Mészáros, Cs. (1991). Acta Cryst. C47, 1060-1062.]). For the iron analogue, see: Hair & Beattie (1977[Hair, N. J. & Beattie, J. K. (1977). Inorg. Chem. 16, 245-250.]). For ionic radii, see: Shannon & Prewitt (1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.]). Gallium nitrate, used in the preparation, easily forms supersaturated solutions, see: Rudolph et al. (2002[Rudolph, W. W., Pye, C. C. & Irmer, G. (2002). J. Raman Spectrosc. 33, 177-190.]), and hence the sample was cooled to 248 K and a seed crystal was introduced to initiate crystallization.

[Scheme 1]

Experimental

Crystal data
  • [Ga(H2O)6](NO3)3·3H2O

  • Mr = 417.89

  • Monoclinic, P 21 /c

  • a = 13.9609 (6) Å

  • b = 9.6498 (5) Å

  • c = 10.9743 (5) Å

  • β = 95.448 (1)°

  • V = 1471.78 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 296 K

  • 0.40 × 0.34 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.479, Tmax = 0.564

  • 10587 measured reflections

  • 3037 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.05

  • 3037 reflections

  • 274 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O8 0.801 (16) 2.26 (2) 2.9348 (18) 142 (2)
O16—H14⋯O18 0.825 (15) 2.072 (15) 2.8732 (19) 163.8 (19)
O5—H10⋯O7 0.823 (16) 1.908 (17) 2.7052 (17) 163 (2)
O1—H1⋯O16 0.814 (15) 1.846 (16) 2.6474 (16) 168 (2)
O4—H7⋯O14 0.809 (15) 1.833 (15) 2.6399 (15) 175 (2)
O5—H9⋯O17 0.810 (16) 1.869 (16) 2.676 (2) 174 (2)
O18—H17⋯O14 0.816 (16) 2.082 (17) 2.8729 (18) 163 (2)
O3—H6⋯O15i 0.814 (15) 1.903 (16) 2.7150 (16) 175 (2)
O1—H2⋯O10i 0.808 (15) 1.848 (16) 2.6545 (16) 175 (2)
O2—H4⋯O16i 0.790 (16) 1.901 (16) 2.6895 (18) 175 (2)
O4—H8⋯O17ii 0.821 (15) 1.816 (15) 2.6312 (16) 171 (2)
O17—H15⋯O9ii 0.808 (15) 1.977 (16) 2.7791 (19) 171 (2)
O3—H5⋯O13iii 0.792 (15) 1.961 (16) 2.7454 (16) 171 (2)
O6—H12⋯O12iv 0.796 (15) 1.926 (16) 2.7179 (16) 174 (2)
O16—H13⋯O18v 0.820 (16) 1.934 (16) 2.7525 (19) 177 (3)
O6—H11⋯O11vi 0.800 (15) 1.895 (16) 2.6938 (17) 176 (2)
O2—H3⋯O8vii 0.794 (15) 1.943 (16) 2.7269 (17) 169 (2)
O17—H16⋯O7viii 0.802 (16) 2.026 (18) 2.7675 (18) 154 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y, -z+1; (vi) x-1, y, z; (vii) -x+1, -y, -z; (viii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is isostructural with [Al(H2O)6](NO3)3.3H2O (Lazar, Ribár, Divjaković & Mészáros, 1991), [Cr(H2O)6](NO3)3.3H2O (Lazar, Ribár & Prelesnik, 1991) and [Fe(H2O)6](NO3)3.3H2O (Hair & Beattie, 1977). Its unit cell volume is almost identical to that of the chromium derivative (1473.87 (17) Å3) and intermediate between those of the aluminum (1448.9 (4) Å3) and iron derivatives 1489.8 (2) Å3), consistent with the values of ionic radii (Ga3+, 0.760 Å; Cr3+, 0.755 Å; Al3+, 0.670 Å; Fe3+, 0.785 Å) (Shannon & Prewitt, 1969). On each of the octahedral units there are two symmetry-related water molecules which hydrogen bond to two NO3- anions. The remaining metal-bound water molecules participate in intermolecular hydrogen bonding with one NO3- anion and one of the interstitial H2O molecules.

Related literature top

For the the aluminium analogue, see: Lazar, Ribár, Divjaković & Mészáros (1991). For the chromium analogue, see: Lazar, Ribár & Prelesnik (1991). For the iron analogue, see: Hair & Beattie (1977). For ionic radii, see: Shannon & Prewitt (1969). Gallium nitrate, used in the preparation, easily forms supersaturated solutions, see: Rudolph et al. (2002) and hence the sample was cooled to 248 K and a seed crystal was introduced to initiate crystallization.

Experimental top

The title compound was prepared by dissolving 5 grams of gallium(III) nitrate hydrate (Aldrich Chemical Company) in a minimum of H2O (approximately 7 ml) and adding three drops of concentrated nitric acid to suppress hydrolysis. Because gallium nitrate easily forms supersaturated solutions (Rudolph et al., 2002), the sample was cooled to 248 K and a seed crystal was introduced to initiate crystallization. A suitable crystal was sealed in a glass capillary to prevent water loss from this hygroscopic material.

Refinement top

The H atoms were found in the electron difference map and O-H distances fixed to 0.82 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. [Ga(H2O)6](NO3).3H2O with thermal ellipsoids shown at 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down the c-axis with hydrogen bonds indicated by dashed lines.
Hexaaquagallium(III) trinitrate trihydrate top
Crystal data top
[Ga(H2O)6](NO3)3·3H2OF(000) = 856
Mr = 417.89Dx = 1.886 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5403 reflections
a = 13.9609 (6) Åθ = 2.3–28.3°
b = 9.6498 (5) ŵ = 1.97 mm1
c = 10.9743 (5) ÅT = 296 K
β = 95.448 (1)°Irregular, colourless
V = 1471.78 (12) Å30.40 × 0.34 × 0.29 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3037 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.479, Tmax = 0.564k = 1210
10587 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.4119P]
where P = (Fo2 + 2Fc2)/3
3037 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.48 e Å3
18 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ga(H2O)6](NO3)3·3H2OV = 1471.78 (12) Å3
Mr = 417.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9609 (6) ŵ = 1.97 mm1
b = 9.6498 (5) ÅT = 296 K
c = 10.9743 (5) Å0.40 × 0.34 × 0.29 mm
β = 95.448 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3037 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2509 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.564Rint = 0.015
10587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02118 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
3037 reflectionsΔρmin = 0.33 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.50000.00000.00000.01867 (8)
Ga20.00000.00000.50000.02131 (8)
N10.19260 (10)0.00919 (13)0.12573 (13)0.0285 (3)
N20.29851 (9)0.18907 (14)0.70878 (11)0.0268 (3)
N30.78610 (9)0.28563 (14)0.71869 (11)0.0293 (3)
O10.57018 (8)0.08802 (13)0.13967 (10)0.0306 (3)
H20.6187 (12)0.132 (2)0.1335 (19)0.051 (6)*
H10.5546 (14)0.088 (2)0.2093 (15)0.051 (6)*
O20.57327 (8)0.10539 (13)0.11126 (10)0.0294 (2)
H40.5629 (16)0.1854 (17)0.121 (2)0.053 (7)*
H30.6243 (12)0.082 (2)0.1307 (18)0.054 (6)*
O30.40601 (8)0.14903 (12)0.00574 (10)0.0269 (2)
H60.3964 (15)0.190 (2)0.0569 (16)0.051 (6)*
H50.3607 (13)0.150 (2)0.0550 (17)0.051 (6)*
O40.07132 (8)0.09427 (14)0.63446 (10)0.0327 (3)
H80.0636 (14)0.093 (2)0.7077 (14)0.043 (5)*
H70.1244 (12)0.121 (2)0.6219 (19)0.051 (6)*
O50.07408 (9)0.10908 (14)0.39031 (10)0.0339 (3)
H100.0971 (15)0.084 (2)0.3275 (17)0.065 (7)*
H90.0633 (16)0.1911 (17)0.381 (2)0.054 (7)*
O60.09607 (8)0.14720 (14)0.49563 (11)0.0358 (3)
H120.1406 (13)0.147 (2)0.4446 (18)0.054 (7)*
H110.1078 (16)0.183 (2)0.5582 (17)0.055 (7)*
O70.11323 (8)0.04401 (15)0.16045 (11)0.0439 (3)
O80.26475 (9)0.00369 (13)0.19969 (12)0.0430 (3)
O90.19968 (11)0.01084 (15)0.01616 (12)0.0529 (4)
O100.72635 (8)0.25702 (13)0.62972 (10)0.0369 (3)
O110.87278 (8)0.26164 (15)0.71226 (11)0.0473 (3)
O120.75836 (8)0.33667 (15)0.81328 (10)0.0424 (3)
O130.26276 (8)0.16544 (14)0.80530 (10)0.0395 (3)
O140.24653 (7)0.18488 (13)0.60783 (9)0.0339 (3)
O150.38523 (7)0.21721 (14)0.70780 (10)0.0400 (3)
O160.53516 (9)0.12179 (13)0.37069 (11)0.0333 (3)
H140.4793 (11)0.108 (2)0.3864 (17)0.043 (6)*
H130.5662 (15)0.076 (2)0.4232 (18)0.063 (7)*
O170.05170 (9)0.38374 (14)0.36978 (11)0.0362 (3)
H150.0906 (14)0.427 (2)0.4140 (19)0.057 (7)*
H160.0021 (13)0.420 (2)0.383 (2)0.056 (7)*
O180.35675 (10)0.02473 (15)0.45021 (13)0.0410 (3)
H170.3188 (14)0.075 (2)0.482 (2)0.064 (8)*
H180.3232 (17)0.016 (2)0.399 (2)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.01679 (12)0.02124 (13)0.01796 (12)0.00073 (8)0.00156 (8)0.00138 (8)
Ga20.01777 (12)0.02999 (15)0.01606 (12)0.00007 (8)0.00097 (8)0.00210 (8)
N10.0297 (7)0.0278 (8)0.0280 (7)0.0019 (5)0.0029 (6)0.0003 (5)
N20.0238 (6)0.0302 (7)0.0261 (6)0.0027 (5)0.0002 (5)0.0037 (5)
N30.0290 (7)0.0308 (7)0.0275 (7)0.0044 (6)0.0005 (5)0.0004 (5)
O10.0271 (6)0.0417 (7)0.0227 (6)0.0094 (5)0.0012 (4)0.0071 (5)
O20.0258 (6)0.0284 (7)0.0356 (6)0.0032 (5)0.0116 (5)0.0065 (5)
O30.0245 (5)0.0316 (6)0.0240 (6)0.0097 (5)0.0002 (4)0.0029 (5)
O40.0246 (6)0.0536 (8)0.0196 (6)0.0108 (5)0.0018 (4)0.0078 (5)
O50.0395 (6)0.0376 (8)0.0265 (6)0.0047 (6)0.0119 (5)0.0013 (5)
O60.0314 (6)0.0480 (8)0.0269 (6)0.0158 (5)0.0024 (5)0.0064 (5)
O70.0317 (6)0.0576 (8)0.0446 (7)0.0009 (6)0.0141 (5)0.0047 (6)
O80.0379 (7)0.0536 (9)0.0361 (7)0.0013 (5)0.0045 (5)0.0039 (5)
O90.0524 (9)0.0741 (11)0.0329 (7)0.0144 (7)0.0072 (6)0.0110 (6)
O100.0353 (6)0.0431 (7)0.0301 (6)0.0072 (5)0.0080 (5)0.0057 (5)
O110.0271 (6)0.0721 (10)0.0422 (7)0.0116 (6)0.0006 (5)0.0133 (6)
O120.0339 (6)0.0605 (9)0.0324 (6)0.0064 (6)0.0018 (5)0.0149 (6)
O130.0301 (6)0.0633 (9)0.0255 (6)0.0049 (6)0.0053 (5)0.0088 (6)
O140.0262 (5)0.0503 (7)0.0242 (5)0.0054 (5)0.0023 (4)0.0028 (5)
O150.0214 (5)0.0629 (9)0.0350 (6)0.0103 (5)0.0009 (4)0.0128 (6)
O160.0336 (6)0.0346 (7)0.0323 (6)0.0031 (5)0.0066 (5)0.0016 (5)
O170.0311 (6)0.0496 (8)0.0279 (6)0.0003 (6)0.0024 (5)0.0019 (5)
O180.0383 (7)0.0469 (8)0.0365 (7)0.0027 (6)0.0027 (6)0.0091 (6)
Geometric parameters (Å, º) top
Ga1—O11.9354 (10)Ga2—O51.9654 (11)
Ga1—O1i1.9354 (10)N1—O91.2311 (19)
Ga1—O31.9438 (10)N1—O81.2385 (18)
Ga1—O3i1.9438 (10)N1—O71.2513 (18)
Ga1—O21.9515 (11)N2—O131.2343 (16)
Ga1—O2i1.9515 (11)N2—O151.2418 (16)
Ga2—O4ii1.9280 (10)N2—O141.2660 (16)
Ga2—O41.9280 (10)N3—O111.2407 (17)
Ga2—O6ii1.9510 (12)N3—O121.2435 (17)
Ga2—O61.9510 (12)N3—O101.2533 (16)
Ga2—O5ii1.9654 (11)
O1—Ga1—O1i180.0O6ii—Ga2—O6180.00 (8)
O1—Ga1—O389.45 (5)O4ii—Ga2—O5ii87.28 (5)
O1i—Ga1—O390.55 (5)O4—Ga2—O5ii92.72 (5)
O1—Ga1—O3i90.55 (5)O6ii—Ga2—O5ii89.74 (6)
O1i—Ga1—O3i89.45 (5)O6—Ga2—O5ii90.26 (6)
O3—Ga1—O3i180.0O4ii—Ga2—O592.72 (5)
O1—Ga1—O290.62 (5)O4—Ga2—O587.28 (5)
O1i—Ga1—O289.38 (5)O6ii—Ga2—O590.26 (6)
O3—Ga1—O289.23 (5)O6—Ga2—O589.74 (6)
O3i—Ga1—O290.77 (5)O5ii—Ga2—O5180.0
O1—Ga1—O2i89.38 (5)O9—N1—O8119.25 (15)
O1i—Ga1—O2i90.62 (5)O9—N1—O7119.68 (14)
O3—Ga1—O2i90.77 (5)O8—N1—O7121.06 (14)
O3i—Ga1—O2i89.23 (5)O13—N2—O15121.45 (12)
O2—Ga1—O2i179.999 (2)O13—N2—O14120.01 (12)
O4ii—Ga2—O4180.0O15—N2—O14118.54 (12)
O4ii—Ga2—O6ii88.81 (5)O11—N3—O12120.28 (13)
O4—Ga2—O6ii91.19 (5)O11—N3—O10119.68 (13)
O4ii—Ga2—O691.19 (5)O12—N3—O10120.04 (12)
O4—Ga2—O688.81 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O80.80 (2)2.26 (2)2.9348 (18)142 (2)
O16—H14···O180.83 (2)2.07 (2)2.8732 (19)164 (2)
O5—H10···O70.82 (2)1.91 (2)2.7052 (17)163 (2)
O1—H1···O160.81 (2)1.85 (2)2.6474 (16)168 (2)
O4—H7···O140.81 (2)1.83 (2)2.6399 (15)175 (2)
O5—H9···O170.81 (2)1.87 (2)2.676 (2)174 (2)
O18—H17···O140.82 (2)2.08 (2)2.8729 (18)163 (2)
O3—H6···O15iii0.81 (2)1.90 (2)2.7150 (16)175 (2)
O1—H2···O10iii0.81 (2)1.85 (2)2.6545 (16)175 (2)
O2—H4···O16iii0.79 (2)1.90 (2)2.6895 (18)175 (2)
O4—H8···O17iv0.82 (2)1.82 (2)2.6312 (16)171 (2)
O17—H15···O9iv0.81 (2)1.98 (2)2.7791 (19)171 (2)
O3—H5···O13v0.79 (2)1.96 (2)2.7454 (16)171 (2)
O6—H12···O12vi0.80 (2)1.93 (2)2.7179 (16)174 (2)
O16—H13···O18vii0.82 (2)1.93 (2)2.7525 (19)177 (3)
O6—H11···O11viii0.80 (2)1.90 (2)2.6938 (17)176 (2)
O2—H3···O8i0.79 (2)1.94 (2)2.7269 (17)169 (2)
O17—H16···O7ix0.80 (2)2.03 (2)2.7675 (18)154 (2)
Symmetry codes: (i) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y, z1; (vi) x1, y+1/2, z1/2; (vii) x+1, y, z+1; (viii) x1, y, z; (ix) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ga(H2O)6](NO3)3·3H2O
Mr417.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.9609 (6), 9.6498 (5), 10.9743 (5)
β (°) 95.448 (1)
V3)1471.78 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.40 × 0.34 × 0.29
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.479, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
10587, 3037, 2509
Rint0.015
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.05
No. of reflections3037
No. of parameters274
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O80.801 (16)2.26 (2)2.9348 (18)142 (2)
O16—H14···O180.825 (15)2.072 (15)2.8732 (19)163.8 (19)
O5—H10···O70.823 (16)1.908 (17)2.7052 (17)163 (2)
O1—H1···O160.814 (15)1.846 (16)2.6474 (16)168 (2)
O4—H7···O140.809 (15)1.833 (15)2.6399 (15)175 (2)
O5—H9···O170.810 (16)1.869 (16)2.676 (2)174 (2)
O18—H17···O140.816 (16)2.082 (17)2.8729 (18)163 (2)
O3—H6···O15i0.814 (15)1.903 (16)2.7150 (16)175 (2)
O1—H2···O10i0.808 (15)1.848 (16)2.6545 (16)175 (2)
O2—H4···O16i0.790 (16)1.901 (16)2.6895 (18)175 (2)
O4—H8···O17ii0.821 (15)1.816 (15)2.6312 (16)171 (2)
O17—H15···O9ii0.808 (15)1.977 (16)2.7791 (19)171 (2)
O3—H5···O13iii0.792 (15)1.961 (16)2.7454 (16)171 (2)
O6—H12···O12iv0.796 (15)1.926 (16)2.7179 (16)174 (2)
O16—H13···O18v0.820 (16)1.934 (16)2.7525 (19)177 (3)
O6—H11···O11vi0.800 (15)1.895 (16)2.6938 (17)176 (2)
O2—H3···O8vii0.794 (15)1.943 (16)2.7269 (17)169 (2)
O17—H16···O7viii0.802 (16)2.026 (18)2.7675 (18)154 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z1; (iv) x1, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Saint Mary's University, the Saint Mary's University Student Employment Experience Program (ADH) and the Natural Sciences and Engineering Research Council (CCP) for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHair, N. J. & Beattie, J. K. (1977). Inorg. Chem. 16, 245–250.  CrossRef CAS Web of Science Google Scholar
First citationLazar, D., Ribár, B., Divjaković, V. & Mészáros, Cs. (1991). Acta Cryst. C47, 1060–1062.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLazar, D., Ribár, B. & Prelesnik, B. (1991). Acta Cryst. C47, 2282–2285.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRudolph, W. W., Pye, C. C. & Irmer, G. (2002). J. Raman Spectrosc. 33, 177–190.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds