metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di-μ-carbonyl-bis­­{carbon­yl[η5-2,3,4,5-tetra­methyl-1-(5-methyl-2-fur­yl)cyclo­penta­dien­yl]ruthenium(I)}(RuRu)

aHebei Institute of Food Quality, Supervision Inspection and Research, Shijiazhuang 050051, People's Republic of China, bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, cCollege of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China, and dCollege of Chemistry & Materials Science, Hebei Normal University, Shijiazhuang 050016, People's Republic of China
*Correspondence e-mail: tswlhx@126.com

(Received 10 June 2009; accepted 5 July 2009; online 11 July 2009)

In the crystal structure of the title compound, [Ru2(C14H17O)2(CO)4], each RuI atom is connected to one end-on and two bridging carbonyl groups and one cyclo­penta­dienyl ring. The two Ru atoms are connected into binuclear complexes via two bridging carbonyl groups, forming four-membered rings which are located on centres of inversion. The Ru—Ru distance of 2.7483 (11) Å corresponds to a single bond. The two carbonyl groups in these binuclear complexes are trans-oriented.

Related literature

For the crystal structures of related ruthenium complexes, see: Schumann et al. (2002[Schumann, H., Stenz, S., Girgsdies, F. & Mühle, S. (2002). Z. Naturforsch. Teil B, 57, 1017-1026.]); Bailey et al. (1978[Bailey, N. A., Radford, S. L., Sanderson, J. A., Tabatabaian, K., White, C. & Worthington, J. A. (1978). J. Organomet. Chem. 154, 343-351.]); Möhring & Coville (2006[Möhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev. 250, 18-35.]); King (1976[King, R. B. (1976). Coord. Chem. Rev. 20, 155-169.]); Arndt (2002[Arndt, S. O. (2002). J. Chem. Rev. 102, 1953-1976.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C14H17O)2(CO)4]

  • Mr = 716.73

  • Monoclinic, P 21 /c

  • a = 8.504 (3) Å

  • b = 16.978 (7) Å

  • c = 10.223 (4) Å

  • β = 102.220 (6)°

  • V = 1442.5 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 273 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.854, Tmax = 0.918

  • 7123 measured reflections

  • 2552 independent reflections

  • 2448 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.28

  • 2552 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclopentadienyl metal complexes have been extensively investigated since ferrocene has been discovered. Replacement of the hydrogen atoms by other substituents alters both the steric and electronic influences of the µ 5-cyclopentadienyl ring, resulting in differing reactivity and stability of the substituted cyclopentadienyl metal complexes. (King, 1976 and Arndt, 2002). Especially for metallocene polymerization catalysts, the steric and electronic effects of cyclopentadienyl ring substituents greatly influence the catalytic activity (Bailey et al., 1978 and Möhring & Coville, 2006).

In the crystal structure of the title compound the Ru atoms is connected to one cyclopentadienyl ring and the carbon atoms of one end-on and two bridging carbonyl groups. The Ru atoms are connected via the bridging carbonyl groups into dimers, which are located on centres of inversion. The Ru1 Cg1 distance is 1.9151 Å, where Cg1 is the centroid of the cyclopentadiene ring. The Ru—Ru bond distance of 2.7483 (11) Å] agree with that observed in analogous structures (2.7510 (10) Å; Schumann et al., 2002) The two cyclopentadienyl rings are parallel and the two briding carbonyl groups exhibit a trans conformation.

Related literature top

For the crystal structures of related ruthenium complexes, see: Schumann et al. (2002); Bailey et al. (1978); Möhring & Coville (2006); King (1976); Arndt (2002). [Author: scheme should show Ru—Ru bond]

Experimental top

A solution of C5Me4C5H5O(0.285 g, 1.41 mmol) and Ru3(CO)12 (0.3 g, 0.47 mmol) in xylene (30 ml) was refluxed for 12 h. The solvent was removed under vacuum and the residue was chromatographed on an Al2O3 column using petroleum ether/CH2Cl2 (1:8) as eluent. The red band was collected and after several days red crystals were obtained (yield 0.189 g, 37.4%). Analysis calculated for Ru2C32H34O6: C 53.62, H 4.78%; found: C 53.59, H 4.80%.

Refinement top

The H atoms were positioned with idealized geometry [C—H = 0.93 Å (0.96 Å for methy H atoms) and were refined using a riding model with Uiso(H) =1.2Ueq(C)] (1.5 for methyl H atoms).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level (symmetry code: i=-x+1,-y,-z).
trans-Di-µ-carbonyl-bis{carbonyl[η5-2,3,4,5-tetramethyl-1-(5-methyl- 2-furyl)cyclopentadienyl]ruthenium(I)} top
Crystal data top
[Ru2(C14H17O)2(CO)4]F(000) = 724
Mr = 716.73Dx = 1.650 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 8.504 (3) Åθ = 5.5–24.8°
b = 16.978 (7) ŵ = 1.09 mm1
c = 10.223 (4) ÅT = 273 K
β = 102.220 (6)°Prism, red
V = 1442.5 (10) Å30.15 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 109
Tmin = 0.854, Tmax = 0.918k = 1920
7123 measured reflectionsl = 912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0263P)2 + 2.646P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Ru2(C14H17O)2(CO)4]V = 1442.5 (10) Å3
Mr = 716.73Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.504 (3) ŵ = 1.09 mm1
b = 16.978 (7) ÅT = 273 K
c = 10.223 (4) Å0.15 × 0.11 × 0.08 mm
β = 102.220 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2448 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.918Rint = 0.028
7123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.28Δρmax = 0.72 e Å3
2552 reflectionsΔρmin = 0.74 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.51265 (3)0.030918 (17)0.12603 (3)0.02286 (12)
O10.1922 (3)0.0424 (2)0.0644 (3)0.0433 (8)
O20.6179 (5)0.1919 (2)0.0632 (4)0.0637 (11)
O30.2618 (4)0.15332 (18)0.3848 (3)0.0422 (7)
C10.3276 (5)0.0237 (2)0.0361 (4)0.0285 (8)
C20.5750 (5)0.1294 (3)0.0811 (4)0.0353 (9)
C30.3747 (5)0.0432 (2)0.2912 (4)0.0286 (8)
C40.5421 (5)0.0615 (2)0.3412 (4)0.0280 (8)
C50.6327 (5)0.0087 (2)0.3353 (4)0.0286 (8)
C60.5228 (5)0.0684 (2)0.2787 (4)0.0288 (8)
C70.3654 (5)0.0376 (2)0.2524 (4)0.0299 (8)
C80.2398 (5)0.0956 (2)0.2882 (4)0.0330 (9)
C90.0903 (5)0.1014 (3)0.2136 (5)0.0506 (12)
H90.04430.06950.14170.061*
C100.0163 (6)0.1652 (3)0.2653 (6)0.0559 (14)
H100.08790.18320.23270.067*
C110.1194 (6)0.1946 (3)0.3670 (5)0.0486 (12)
C120.1170 (9)0.2592 (4)0.4635 (7)0.082 (2)
H12A0.02220.29060.43420.122*
H12B0.21080.29150.46880.122*
H12C0.11650.23740.55010.122*
C130.6112 (6)0.1365 (3)0.4048 (4)0.0416 (10)
H13A0.55330.18030.35850.062*
H13B0.72250.14010.40000.062*
H13C0.60210.13730.49680.062*
C140.8093 (5)0.0180 (3)0.3875 (5)0.0416 (10)
H14A0.82980.02770.48220.062*
H14B0.86370.02920.37050.062*
H14C0.84800.06170.34360.062*
C150.5671 (6)0.1531 (3)0.2627 (5)0.0451 (11)
H15A0.58140.17940.34750.068*
H15B0.66540.15550.23090.068*
H15C0.48270.17850.19940.068*
C160.2141 (6)0.0843 (3)0.2052 (5)0.0474 (11)
H16A0.16930.07180.11320.071*
H16B0.13770.07150.25880.071*
H16C0.23850.13950.21320.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02253 (18)0.02590 (19)0.02035 (18)0.00050 (11)0.00502 (12)0.00010 (11)
O10.0261 (16)0.065 (2)0.0381 (17)0.0129 (14)0.0044 (13)0.0035 (15)
O20.091 (3)0.0361 (19)0.060 (2)0.0199 (19)0.007 (2)0.0109 (16)
O30.0409 (17)0.0434 (17)0.0429 (18)0.0105 (14)0.0103 (14)0.0034 (14)
C10.031 (2)0.032 (2)0.0239 (19)0.0003 (16)0.0086 (16)0.0000 (15)
C20.040 (2)0.037 (2)0.026 (2)0.0032 (18)0.0023 (17)0.0005 (17)
C30.029 (2)0.035 (2)0.0244 (19)0.0005 (16)0.0114 (15)0.0021 (16)
C40.0233 (18)0.039 (2)0.0216 (19)0.0025 (16)0.0054 (15)0.0040 (16)
C50.030 (2)0.035 (2)0.0228 (19)0.0011 (16)0.0091 (15)0.0037 (15)
C60.034 (2)0.031 (2)0.0224 (19)0.0012 (16)0.0085 (16)0.0035 (15)
C70.031 (2)0.035 (2)0.0239 (19)0.0062 (16)0.0073 (16)0.0026 (16)
C80.031 (2)0.042 (2)0.030 (2)0.0006 (18)0.0151 (17)0.0002 (18)
C90.031 (2)0.076 (4)0.046 (3)0.006 (2)0.008 (2)0.009 (2)
C100.039 (3)0.074 (4)0.059 (3)0.021 (3)0.021 (2)0.013 (3)
C110.048 (3)0.050 (3)0.053 (3)0.020 (2)0.024 (2)0.009 (2)
C120.087 (5)0.065 (4)0.097 (5)0.034 (3)0.029 (4)0.013 (4)
C130.046 (3)0.043 (3)0.035 (2)0.011 (2)0.0085 (19)0.0113 (19)
C140.028 (2)0.058 (3)0.036 (2)0.0045 (19)0.0018 (18)0.008 (2)
C150.060 (3)0.033 (2)0.042 (3)0.006 (2)0.009 (2)0.0045 (19)
C160.039 (3)0.048 (3)0.053 (3)0.019 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
Ru1—C21.842 (4)C7—C161.502 (6)
Ru1—C1i2.020 (4)C8—C91.341 (6)
Ru1—C12.033 (4)C9—C101.410 (7)
Ru1—C42.222 (4)C9—H90.9300
Ru1—C32.260 (4)C10—C111.310 (8)
Ru1—C52.268 (4)C10—H100.9300
Ru1—C62.286 (4)C11—C121.477 (8)
Ru1—C72.297 (4)C12—H12A0.9600
Ru1—Ru1i2.7483 (11)C12—H12B0.9600
O1—C11.170 (5)C12—H12C0.9600
O2—C21.149 (5)C13—H13A0.9600
O3—C81.376 (5)C13—H13B0.9600
O3—C111.378 (5)C13—H13C0.9600
C1—Ru1i2.020 (4)C14—H14A0.9600
C3—C71.425 (5)C14—H14B0.9600
C3—C41.441 (5)C14—H14C0.9600
C3—C81.447 (6)C15—H15A0.9600
C4—C51.427 (6)C15—H15B0.9600
C4—C131.492 (6)C15—H15C0.9600
C5—C61.416 (6)C16—H16A0.9600
C5—C141.493 (6)C16—H16B0.9600
C6—C71.409 (6)C16—H16C0.9600
C6—C151.506 (6)
C2—Ru1—C1i92.69 (17)C4—C5—Ru169.7 (2)
C2—Ru1—C193.75 (17)C14—C5—Ru1125.9 (3)
C1i—Ru1—C194.61 (16)C7—C6—C5109.3 (3)
C2—Ru1—C493.23 (16)C7—C6—C15125.7 (4)
C1i—Ru1—C4127.74 (15)C5—C6—C15124.7 (4)
C1—Ru1—C4136.60 (15)C7—C6—Ru172.5 (2)
C2—Ru1—C3108.97 (17)C5—C6—Ru171.2 (2)
C1i—Ru1—C3152.57 (15)C15—C6—Ru1127.2 (3)
C1—Ru1—C3100.37 (15)C6—C7—C3108.0 (3)
C4—Ru1—C337.50 (14)C6—C7—C16125.5 (4)
C2—Ru1—C5114.09 (16)C3—C7—C16126.2 (4)
C1i—Ru1—C594.66 (15)C6—C7—Ru171.7 (2)
C1—Ru1—C5150.13 (15)C3—C7—Ru170.4 (2)
C4—Ru1—C537.04 (14)C16—C7—Ru1128.2 (3)
C3—Ru1—C561.57 (14)C9—C8—O3108.9 (4)
C2—Ru1—C6150.26 (16)C9—C8—C3135.1 (4)
C1i—Ru1—C692.30 (15)O3—C8—C3115.9 (4)
C1—Ru1—C6115.03 (15)C8—C9—C10106.7 (5)
C4—Ru1—C661.08 (14)C8—C9—H9126.6
C3—Ru1—C660.55 (14)C10—C9—H9126.6
C5—Ru1—C636.24 (14)C11—C10—C9108.3 (4)
C2—Ru1—C7145.09 (17)C11—C10—H10125.8
C1i—Ru1—C7121.50 (15)C9—C10—H10125.8
C1—Ru1—C790.47 (15)C10—C11—O3109.4 (4)
C4—Ru1—C761.45 (14)C10—C11—C12135.4 (5)
C3—Ru1—C736.42 (14)O3—C11—C12115.2 (5)
C5—Ru1—C760.63 (14)C11—C12—H12A109.5
C6—Ru1—C735.80 (14)C11—C12—H12B109.5
C2—Ru1—Ru1i94.75 (13)H12A—C12—H12B109.5
C1i—Ru1—Ru1i47.51 (11)C11—C12—H12C109.5
C1—Ru1—Ru1i47.10 (11)H12A—C12—H12C109.5
C4—Ru1—Ru1i170.90 (11)H12B—C12—H12C109.5
C3—Ru1—Ru1i141.76 (10)C4—C13—H13A109.5
C5—Ru1—Ru1i134.53 (10)C4—C13—H13B109.5
C6—Ru1—Ru1i110.03 (10)H13A—C13—H13B109.5
C7—Ru1—Ru1i112.96 (10)C4—C13—H13C109.5
C8—O3—C11106.6 (4)H13A—C13—H13C109.5
O1—C1—Ru1i137.2 (3)H13B—C13—H13C109.5
O1—C1—Ru1137.4 (3)C5—C14—H14A109.5
Ru1i—C1—Ru185.39 (16)C5—C14—H14B109.5
O2—C2—Ru1174.9 (4)H14A—C14—H14B109.5
C7—C3—C4107.4 (3)C5—C14—H14C109.5
C7—C3—C8126.1 (4)H14A—C14—H14C109.5
C4—C3—C8126.4 (4)H14B—C14—H14C109.5
C7—C3—Ru173.2 (2)C6—C15—H15A109.5
C4—C3—Ru169.8 (2)C6—C15—H15B109.5
C8—C3—Ru1125.1 (3)H15A—C15—H15B109.5
C5—C4—C3107.8 (3)C6—C15—H15C109.5
C5—C4—C13124.4 (4)H15A—C15—H15C109.5
C3—C4—C13127.4 (4)H15B—C15—H15C109.5
C5—C4—Ru173.2 (2)C7—C16—H16A109.5
C3—C4—Ru172.7 (2)C7—C16—H16B109.5
C13—C4—Ru1125.6 (3)H16A—C16—H16B109.5
C6—C5—C4107.4 (3)C7—C16—H16C109.5
C6—C5—C14126.7 (4)H16A—C16—H16C109.5
C4—C5—C14125.8 (4)H16B—C16—H16C109.5
C6—C5—Ru172.6 (2)
C2—Ru1—C1—O187.0 (5)C6—Ru1—C5—C4116.8 (3)
C1i—Ru1—C1—O1180.0 (6)C7—Ru1—C5—C480.5 (2)
C4—Ru1—C1—O111.7 (6)Ru1i—Ru1—C5—C4174.79 (17)
C3—Ru1—C1—O123.0 (5)C2—Ru1—C5—C1459.5 (4)
C5—Ru1—C1—O172.3 (6)C1i—Ru1—C5—C1435.5 (4)
C6—Ru1—C1—O185.3 (5)C1—Ru1—C5—C14143.2 (4)
C7—Ru1—C1—O158.3 (5)C4—Ru1—C5—C14120.2 (5)
Ru1i—Ru1—C1—O1180.0 (6)C3—Ru1—C5—C14158.9 (4)
C2—Ru1—C1—Ru1i93.01 (17)C6—Ru1—C5—C14123.1 (5)
C1i—Ru1—C1—Ru1i0.0C7—Ru1—C5—C14159.3 (4)
C4—Ru1—C1—Ru1i168.28 (16)Ru1i—Ru1—C5—C1465.0 (4)
C3—Ru1—C1—Ru1i156.93 (13)C4—C5—C6—C71.5 (4)
C5—Ru1—C1—Ru1i107.7 (3)C14—C5—C6—C7174.9 (4)
C6—Ru1—C1—Ru1i94.71 (15)Ru1—C5—C6—C762.9 (3)
C7—Ru1—C1—Ru1i121.66 (14)C4—C5—C6—C15175.8 (4)
C1i—Ru1—C2—O2115 (5)C14—C5—C6—C150.5 (6)
C1—Ru1—C2—O2150 (5)Ru1—C5—C6—C15122.8 (4)
C4—Ru1—C2—O213 (5)C4—C5—C6—Ru161.4 (2)
C3—Ru1—C2—O248 (5)C14—C5—C6—Ru1122.2 (4)
C5—Ru1—C2—O219 (5)C2—Ru1—C6—C7113.5 (4)
C6—Ru1—C2—O216 (5)C1i—Ru1—C6—C7147.0 (2)
C7—Ru1—C2—O254 (5)C1—Ru1—C6—C750.8 (3)
Ru1i—Ru1—C2—O2163 (5)C4—Ru1—C6—C780.4 (2)
C2—Ru1—C3—C7174.1 (2)C3—Ru1—C6—C737.2 (2)
C1i—Ru1—C3—C745.5 (4)C5—Ru1—C6—C7118.3 (3)
C1—Ru1—C3—C776.5 (2)Ru1i—Ru1—C6—C7101.8 (2)
C4—Ru1—C3—C7116.4 (3)C2—Ru1—C6—C54.8 (4)
C5—Ru1—C3—C778.1 (2)C1i—Ru1—C6—C594.7 (2)
C6—Ru1—C3—C736.5 (2)C1—Ru1—C6—C5169.1 (2)
Ru1i—Ru1—C3—C748.8 (3)C4—Ru1—C6—C537.9 (2)
C2—Ru1—C3—C469.5 (3)C3—Ru1—C6—C581.1 (2)
C1i—Ru1—C3—C470.8 (4)C7—Ru1—C6—C5118.3 (3)
C1—Ru1—C3—C4167.2 (2)Ru1i—Ru1—C6—C5139.9 (2)
C5—Ru1—C3—C438.2 (2)C2—Ru1—C6—C15124.6 (4)
C6—Ru1—C3—C479.8 (2)C1i—Ru1—C6—C1525.1 (4)
C7—Ru1—C3—C4116.4 (3)C1—Ru1—C6—C1571.1 (4)
Ru1i—Ru1—C3—C4165.20 (18)C4—Ru1—C6—C15157.7 (4)
C2—Ru1—C3—C851.4 (4)C3—Ru1—C6—C15159.1 (4)
C1i—Ru1—C3—C8168.2 (3)C5—Ru1—C6—C15119.8 (5)
C1—Ru1—C3—C846.2 (4)C7—Ru1—C6—C15121.9 (5)
C4—Ru1—C3—C8121.0 (4)Ru1i—Ru1—C6—C1520.1 (4)
C5—Ru1—C3—C8159.2 (4)C5—C6—C7—C30.7 (4)
C6—Ru1—C3—C8159.2 (4)C15—C6—C7—C3175.0 (4)
C7—Ru1—C3—C8122.7 (5)Ru1—C6—C7—C361.4 (3)
Ru1i—Ru1—C3—C873.8 (4)C5—C6—C7—C16173.6 (4)
C7—C3—C4—C51.3 (4)C15—C6—C7—C160.7 (7)
C8—C3—C4—C5175.3 (4)Ru1—C6—C7—C16124.3 (4)
Ru1—C3—C4—C565.3 (3)C5—C6—C7—Ru162.1 (3)
C7—C3—C4—C13174.0 (4)C15—C6—C7—Ru1123.7 (4)
C8—C3—C4—C132.6 (6)C4—C3—C7—C60.4 (4)
Ru1—C3—C4—C13121.9 (4)C8—C3—C7—C6176.3 (4)
C7—C3—C4—Ru164.0 (3)Ru1—C3—C7—C662.2 (3)
C8—C3—C4—Ru1119.4 (4)C4—C3—C7—C16174.6 (4)
C2—Ru1—C4—C5127.1 (3)C8—C3—C7—C162.0 (7)
C1i—Ru1—C4—C531.2 (3)Ru1—C3—C7—C16123.6 (4)
C1—Ru1—C4—C5133.9 (2)C4—C3—C7—Ru161.8 (2)
C3—Ru1—C4—C5115.4 (3)C8—C3—C7—Ru1121.6 (4)
C6—Ru1—C4—C537.1 (2)C2—Ru1—C7—C6127.4 (3)
C7—Ru1—C4—C578.1 (2)C1i—Ru1—C7—C639.7 (3)
Ru1i—Ru1—C4—C524.2 (7)C1—Ru1—C7—C6135.4 (2)
C2—Ru1—C4—C3117.5 (3)C4—Ru1—C7—C679.2 (2)
C1i—Ru1—C4—C3146.6 (2)C3—Ru1—C7—C6117.6 (3)
C1—Ru1—C4—C318.5 (3)C5—Ru1—C7—C636.7 (2)
C5—Ru1—C4—C3115.4 (3)Ru1i—Ru1—C7—C692.8 (2)
C6—Ru1—C4—C378.3 (2)C2—Ru1—C7—C39.7 (4)
C7—Ru1—C4—C337.3 (2)C1i—Ru1—C7—C3157.3 (2)
Ru1i—Ru1—C4—C391.2 (6)C1—Ru1—C7—C3107.0 (2)
C2—Ru1—C4—C136.5 (4)C4—Ru1—C7—C338.4 (2)
C1i—Ru1—C4—C1389.4 (4)C5—Ru1—C7—C380.9 (2)
C1—Ru1—C4—C13105.4 (4)C6—Ru1—C7—C3117.6 (3)
C3—Ru1—C4—C13124.0 (5)Ru1i—Ru1—C7—C3149.6 (2)
C5—Ru1—C4—C13120.6 (4)C2—Ru1—C7—C16111.5 (4)
C6—Ru1—C4—C13157.7 (4)C1i—Ru1—C7—C1681.5 (4)
C7—Ru1—C4—C13161.3 (4)C1—Ru1—C7—C1614.2 (4)
Ru1i—Ru1—C4—C13144.8 (5)C4—Ru1—C7—C16159.6 (4)
C3—C4—C5—C61.7 (4)C3—Ru1—C7—C16121.2 (5)
C13—C4—C5—C6174.7 (4)C5—Ru1—C7—C16157.8 (4)
Ru1—C4—C5—C663.2 (3)C6—Ru1—C7—C16121.2 (5)
C3—C4—C5—C14174.7 (4)Ru1i—Ru1—C7—C1628.4 (4)
C13—C4—C5—C141.7 (6)C11—O3—C8—C90.3 (5)
Ru1—C4—C5—C14120.3 (4)C11—O3—C8—C3178.2 (4)
C3—C4—C5—Ru164.9 (3)C7—C3—C8—C929.6 (8)
C13—C4—C5—Ru1122.0 (4)C4—C3—C8—C9154.4 (5)
C2—Ru1—C5—C6177.4 (2)Ru1—C3—C8—C964.7 (7)
C1i—Ru1—C5—C687.5 (2)C7—C3—C8—O3148.4 (4)
C1—Ru1—C5—C620.2 (4)C4—C3—C8—O327.6 (6)
C4—Ru1—C5—C6116.8 (3)Ru1—C3—C8—O3117.3 (3)
C3—Ru1—C5—C678.0 (2)O3—C8—C9—C100.1 (5)
C7—Ru1—C5—C636.2 (2)C3—C8—C9—C10178.2 (5)
Ru1i—Ru1—C5—C658.0 (3)C8—C9—C10—C110.6 (6)
C2—Ru1—C5—C460.7 (3)C9—C10—C11—O30.7 (6)
C1i—Ru1—C5—C4155.7 (2)C9—C10—C11—C12178.8 (6)
C1—Ru1—C5—C496.6 (3)C8—O3—C11—C100.6 (5)
C3—Ru1—C5—C438.7 (2)C8—O3—C11—C12179.0 (5)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ru2(C14H17O)2(CO)4]
Mr716.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)8.504 (3), 16.978 (7), 10.223 (4)
β (°) 102.220 (6)
V3)1442.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.854, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
7123, 2552, 2448
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.28
No. of reflections2552
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.74

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Hebei Natural Science Foundation of China (No. B2008000150) and the Research Fund for the Doctoral Program of Hebei Normal University (No. L2005B18)

References

First citationArndt, S. O. (2002). J. Chem. Rev. 102, 1953–1976.  Web of Science CrossRef CAS Google Scholar
First citationBailey, N. A., Radford, S. L., Sanderson, J. A., Tabatabaian, K., White, C. & Worthington, J. A. (1978). J. Organomet. Chem. 154, 343–351.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKing, R. B. (1976). Coord. Chem. Rev. 20, 155–169.  CAS Google Scholar
First citationMöhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev. 250, 18–35.  Web of Science CrossRef Google Scholar
First citationSchumann, H., Stenz, S., Girgsdies, F. & Mühle, S. (2002). Z. Naturforsch. Teil B, 57, 1017–1026.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds