organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Bromo­phenyl­sulfon­yl)isonicotino­hydrazide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and bDepartment of Chemistry, University of Gujrat, Gujrat, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com

(Received 3 July 2009; accepted 18 July 2009; online 25 July 2009)

The title compound, C12H10BrN3O3S, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The dihedral angles between the two six-membered rings in the mol­ecules are 34.1 (3) and 45.1 (2)°. In the crystal structure, mol­ecules are connected via N—H⋯O and N—H⋯N hydrogen bonding.

Related literature

For general background to isonicotinic acid hydrazides, see: Carlton (1967[Carlton, W. W. (1967). Avian Dis., 11, 241-254.]). For a related structure, see: Wang et al. (2008[Wang, S.-Y., Song, X.-M. & Duan, L.-X. (2008). Acta Cryst. E64, o1880.]). For the synthesis and biological activity of isoniazid and hydrazide derivatives, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]); Kucukguzel et al. (2003[Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Carvalho et al. (2008[Carvalho, S. A., de Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicenate, F. R. (2008). Bio. Med. Chem. Lett. 18, 538-541.]), For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrN3O3S

  • Mr = 356.20

  • Monoclinic, P 21 /c

  • a = 10.1229 (6) Å

  • b = 19.0440 (12) Å

  • c = 15.0640 (7) Å

  • β = 96.862 (2)°

  • V = 2883.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.349, Tmax = 0.641

  • 29398 measured reflections

  • 6601 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.146

  • S = 1.01

  • 6601 reflections

  • 373 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.76 (4) 2.15 (4) 2.882 (4) 165.09
N3—H3⋯N4ii 0.78 (4) 2.10 (4) 2.868 (5) 168.21
N6—H6⋯O6iii 0.83 (4) 2.26 (4) 2.998 (4) 147.35
N5—H5⋯N1iv 0.83 (4) 2.03 (4) 2.847 (4) 168.32
N3—H3⋯O1 0.78 (4) 2.49 (4) 2.732 (4) 100 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isonicotinic acid hydrazide(INH) commonly known as isoniazid is a drug being used for the treatment of tuberclosis (TB) for long time (Carlton, 1967). Different approaches have been made for the synthesis of biologically active derivatives of isoniazid (Lourenco et al., 2008), (Kucukguzel et al., 2007), (Carvalho, et al.. 2008) and their crystallographic studies (Wang et al., 2008). In this context we report the crystal structure of title compound (N'-[(4-bromophenyl)sulfonyl]pyridine-4-carbohydrazide) a sulfonamide derivative of Isoniazid.

The title compound crystallizes with two crystallographically independent molecules in the asymmetric unit. The dihedral angle in each of these molecules amount to 34.1 (3) ° in molecule A, while it is 45.1 (2) ° (Fig. 1).

In the crystal structure the molecules are connected via intermolecular and intramolecular N–H···O and N–H···N hydrogen bonding (Fig. 2 and Tab. 1). One of the two indpenendent molecules is connected into dimers via N–H···O hydrogen bonding of the sulfonamide group into R22(8) rings (Bernstein et al., 1995). These dimers are further linked by additional N–H···O and N–H···N hydrogen bonding.

Related literature top

For general background to isonicotinic acid hydrazide, see: Carlton et al. (1967). For a related structure, see: Wang et al. (2008). For the biological activity of isoniazidderivatives, see: Lourenco et al. (2008); Kucukguzel et al. (2003); Carvalho et al. (2008), For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To the solution of Isoniazid (0.5 g, 3.646 mmol) in distilled water (10 ml), 4-Bromobenzenesulfonyl chloride(0.9316 g, 3.65 mmol) was suspended. The reaction mixture was stirred at room temperature for 4 hrs at constant pH 8–9, which was adjusted by 1M sodium carbonate solution. After completion of the reaction which was observed by the consumption of suspended 4-Bromobenzenesulfonyl chloride, the pH was adjusted at 2–3 using 1 N HCl solution, which results the formation of a light yellow coloured precipitate, which was filtered off and dried. The prodcut was recrystallized from methanol.

Refinement top

The C-H H-atoms were positioned with idealized geometry with C—H = 0.93 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The N-H H atoms were located in difference map and refined isotropic ( Uiso(H) = 1.2 Ueq(N) with varying coordinates.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) with hydrogen bonding shown as dashed lines.
N'-(4-Bromophenylsulfonyl)isonicotinohydrazide top
Crystal data top
C12H10BrN3O3SF(000) = 1424
Mr = 356.20Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5184 reflections
a = 10.1229 (6) Åθ = 2.1–22.9°
b = 19.0440 (12) ŵ = 3.01 mm1
c = 15.0640 (7) ÅT = 296 K
β = 96.862 (2)°Needle, white yellow
V = 2883.2 (3) Å30.36 × 0.30 × 0.15 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6601 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1311
Tmin = 0.349, Tmax = 0.641k = 2423
29398 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0597P)2 + 2.5287P]
where P = (Fo2 + 2Fc2)/3
6601 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C12H10BrN3O3SV = 2883.2 (3) Å3
Mr = 356.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.1229 (6) ŵ = 3.01 mm1
b = 19.0440 (12) ÅT = 296 K
c = 15.0640 (7) Å0.36 × 0.30 × 0.15 mm
β = 96.862 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6601 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3473 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.641Rint = 0.053
29398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.06 e Å3
6601 reflectionsΔρmin = 0.88 e Å3
373 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01531 (7)0.40221 (5)0.59324 (5)0.1083 (3)
Br21.07622 (6)0.14607 (4)0.37352 (6)0.1046 (3)
S10.46424 (10)0.38694 (6)0.33172 (7)0.0392 (3)
S20.46755 (9)0.10499 (5)0.43498 (6)0.0328 (2)
O10.1616 (3)0.49151 (15)0.28196 (19)0.0467 (7)
O20.4756 (3)0.31692 (15)0.2999 (2)0.0510 (8)
O30.5802 (3)0.42527 (17)0.3664 (2)0.0566 (9)
O40.2996 (2)0.20910 (13)0.59686 (17)0.0376 (7)
O50.3909 (3)0.16199 (14)0.39574 (18)0.0420 (7)
O60.4282 (3)0.03415 (14)0.41370 (17)0.0413 (7)
N10.2166 (3)0.3447 (2)0.1433 (3)0.0533 (10)
N20.2699 (3)0.41007 (18)0.2107 (2)0.0340 (8)
H20.270 (4)0.383 (2)0.174 (3)0.041*
N30.3969 (3)0.43457 (18)0.2456 (2)0.0353 (8)
H30.398 (4)0.474 (2)0.259 (3)0.042*
N40.5582 (4)0.42464 (18)0.6902 (2)0.0474 (9)
N50.5095 (3)0.17527 (17)0.5802 (2)0.0327 (8)
H50.590 (4)0.176 (2)0.600 (3)0.039*
N60.4645 (3)0.11035 (17)0.5443 (2)0.0336 (8)
H60.493 (4)0.077 (2)0.577 (3)0.040*
C10.0288 (4)0.4054 (2)0.1991 (3)0.0352 (9)
C20.0182 (4)0.3454 (3)0.1500 (4)0.0685 (16)
H2A0.09420.32350.13420.082*
C30.1055 (5)0.3172 (3)0.1236 (4)0.0732 (17)
H3A0.11020.27610.09000.088*
C40.2061 (5)0.4033 (3)0.1895 (4)0.0774 (18)
H40.28370.42440.20380.093*
C50.0851 (4)0.4357 (3)0.2184 (4)0.0668 (15)
H5A0.08280.47750.25050.080*
C60.1592 (4)0.4400 (2)0.2344 (3)0.0351 (9)
C70.3474 (4)0.3869 (2)0.4092 (2)0.0368 (9)
C80.2620 (4)0.3310 (2)0.4126 (3)0.0453 (11)
H80.27130.29090.37860.054*
C90.1620 (5)0.3355 (3)0.4677 (3)0.0574 (13)
H90.10310.29840.47110.069*
C100.1508 (5)0.3954 (3)0.5172 (3)0.0559 (13)
C110.2374 (5)0.4504 (3)0.5151 (3)0.0557 (13)
H110.22910.48990.55040.067*
C120.3362 (4)0.4468 (2)0.4607 (3)0.0460 (11)
H120.39530.48400.45810.055*
C130.4719 (4)0.29175 (19)0.6327 (2)0.0301 (8)
C140.5961 (4)0.3167 (2)0.6178 (3)0.0482 (11)
H140.65260.28940.58770.058*
C150.6342 (5)0.3825 (2)0.6483 (3)0.0556 (12)
H150.71830.39840.63900.067*
C160.4389 (4)0.4011 (2)0.7026 (3)0.0424 (10)
H160.38320.43050.73060.051*
C170.3926 (4)0.3353 (2)0.6764 (2)0.0363 (9)
H170.30890.32050.68810.044*
C180.4181 (4)0.22155 (19)0.6023 (2)0.0288 (8)
C190.6340 (4)0.1167 (2)0.4150 (2)0.0346 (9)
C200.6736 (4)0.1792 (3)0.3808 (3)0.0514 (11)
H200.61250.21510.36690.062*
C210.8050 (5)0.1878 (3)0.3674 (3)0.0654 (14)
H210.83300.22980.34430.078*
C220.8945 (5)0.1344 (3)0.3881 (3)0.0606 (14)
C230.8545 (5)0.0717 (3)0.4216 (3)0.0581 (13)
H230.91580.03570.43500.070*
C240.7237 (4)0.0623 (2)0.4352 (3)0.0477 (11)
H240.69570.02010.45760.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0866 (5)0.1511 (8)0.0966 (5)0.0053 (5)0.0490 (4)0.0107 (5)
Br20.0489 (3)0.1069 (6)0.1655 (7)0.0228 (3)0.0441 (4)0.0377 (5)
S10.0289 (5)0.0374 (6)0.0504 (6)0.0021 (4)0.0004 (4)0.0027 (5)
S20.0309 (5)0.0262 (5)0.0410 (5)0.0004 (4)0.0034 (4)0.0016 (4)
O10.0373 (16)0.0419 (19)0.0602 (18)0.0023 (13)0.0028 (14)0.0199 (15)
O20.0537 (18)0.0331 (17)0.0663 (19)0.0106 (14)0.0074 (15)0.0016 (15)
O30.0308 (16)0.064 (2)0.072 (2)0.0041 (15)0.0075 (14)0.0053 (17)
O40.0277 (14)0.0306 (16)0.0552 (17)0.0032 (12)0.0079 (12)0.0012 (13)
O50.0397 (16)0.0371 (17)0.0483 (16)0.0046 (13)0.0015 (13)0.0059 (13)
O60.0444 (16)0.0295 (17)0.0488 (16)0.0045 (13)0.0005 (13)0.0060 (13)
N10.0282 (19)0.061 (3)0.070 (3)0.0053 (18)0.0023 (17)0.004 (2)
N20.0266 (17)0.030 (2)0.045 (2)0.0025 (14)0.0027 (15)0.0088 (15)
N30.0266 (17)0.0263 (19)0.052 (2)0.0036 (15)0.0010 (14)0.0082 (17)
N40.047 (2)0.030 (2)0.062 (2)0.0042 (17)0.0051 (18)0.0024 (18)
N50.0257 (16)0.0244 (19)0.047 (2)0.0017 (14)0.0003 (14)0.0068 (15)
N60.0396 (19)0.0233 (19)0.0373 (18)0.0021 (15)0.0028 (14)0.0028 (15)
C10.029 (2)0.038 (2)0.038 (2)0.0023 (17)0.0013 (16)0.0056 (18)
C20.019 (2)0.076 (4)0.110 (4)0.002 (2)0.005 (2)0.043 (3)
C30.039 (3)0.070 (4)0.109 (4)0.003 (3)0.000 (3)0.045 (3)
C40.030 (3)0.089 (5)0.115 (5)0.005 (3)0.016 (3)0.032 (4)
C50.034 (3)0.067 (4)0.101 (4)0.001 (2)0.013 (3)0.039 (3)
C60.033 (2)0.029 (2)0.042 (2)0.0000 (18)0.0043 (18)0.0011 (19)
C70.036 (2)0.032 (2)0.040 (2)0.0027 (18)0.0041 (17)0.0008 (19)
C80.050 (3)0.035 (3)0.050 (3)0.001 (2)0.004 (2)0.003 (2)
C90.054 (3)0.054 (3)0.064 (3)0.014 (2)0.007 (2)0.007 (3)
C100.053 (3)0.068 (4)0.047 (3)0.010 (3)0.009 (2)0.002 (3)
C110.064 (3)0.056 (3)0.046 (3)0.010 (3)0.002 (2)0.009 (2)
C120.050 (3)0.042 (3)0.044 (2)0.001 (2)0.006 (2)0.004 (2)
C130.0307 (19)0.025 (2)0.034 (2)0.0031 (16)0.0013 (16)0.0014 (17)
C140.036 (2)0.031 (2)0.080 (3)0.0004 (19)0.017 (2)0.007 (2)
C150.039 (2)0.036 (3)0.091 (4)0.010 (2)0.009 (2)0.004 (3)
C160.055 (3)0.032 (3)0.041 (2)0.007 (2)0.005 (2)0.0044 (19)
C170.038 (2)0.031 (2)0.040 (2)0.0023 (18)0.0058 (18)0.0013 (18)
C180.029 (2)0.025 (2)0.031 (2)0.0024 (16)0.0007 (16)0.0026 (16)
C190.034 (2)0.031 (2)0.040 (2)0.0039 (18)0.0096 (17)0.0066 (18)
C200.044 (3)0.048 (3)0.063 (3)0.003 (2)0.008 (2)0.004 (2)
C210.059 (3)0.059 (4)0.081 (4)0.021 (3)0.019 (3)0.004 (3)
C220.037 (3)0.068 (4)0.079 (3)0.008 (3)0.018 (2)0.023 (3)
C230.043 (3)0.052 (3)0.081 (3)0.005 (2)0.011 (2)0.017 (3)
C240.044 (3)0.033 (3)0.068 (3)0.001 (2)0.015 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C101.893 (5)C4—H40.9300
Br2—C221.891 (4)C5—H5A0.9300
S1—O21.426 (3)C7—C81.376 (6)
S1—O31.427 (3)C7—C121.392 (6)
S1—N31.661 (4)C8—C91.386 (6)
S1—C71.758 (4)C8—H80.9300
S2—O51.421 (3)C9—C101.375 (7)
S2—O61.432 (3)C9—H90.9300
S2—N61.654 (3)C10—C111.370 (7)
S2—C191.760 (4)C11—C121.369 (6)
O1—C61.213 (5)C11—H110.9300
O4—C181.216 (4)C12—H120.9300
N1—C31.306 (6)C13—C171.375 (5)
N1—C41.313 (6)C13—C141.387 (5)
N2—C61.343 (5)C13—C181.495 (5)
N2—N31.409 (4)C14—C151.375 (6)
N2—H20.75 (4)C14—H140.9300
N3—H30.77 (4)C15—H150.9300
N4—C151.322 (6)C16—C171.379 (5)
N4—C161.323 (5)C16—H160.9300
N5—C181.348 (5)C17—H170.9300
N5—N61.403 (4)C19—C201.375 (6)
N5—H50.83 (4)C19—C241.386 (6)
N6—H60.83 (4)C20—C211.379 (6)
C1—C51.351 (6)C20—H200.9300
C1—C21.359 (6)C21—C221.372 (7)
C1—C61.513 (5)C21—H210.9300
C2—C31.377 (6)C22—C231.376 (7)
C2—H2A0.9300C23—C241.376 (6)
C3—H3A0.9300C23—H230.9300
C4—C51.393 (7)C24—H240.9300
O2—S1—O3120.34 (19)C9—C8—H8120.6
O2—S1—N3106.87 (17)C10—C9—C8119.3 (4)
O3—S1—N3104.46 (18)C10—C9—H9120.3
O2—S1—C7108.10 (19)C8—C9—H9120.3
O3—S1—C7110.28 (19)C11—C10—C9121.9 (4)
N3—S1—C7105.78 (17)C11—C10—Br1118.2 (4)
O5—S2—O6120.20 (17)C9—C10—Br1119.9 (4)
O5—S2—N6107.03 (17)C12—C11—C10119.4 (4)
O6—S2—N6104.08 (17)C12—C11—H11120.3
O5—S2—C19108.57 (18)C10—C11—H11120.3
O6—S2—C19109.09 (18)C11—C12—C7119.3 (4)
N6—S2—C19107.09 (17)C11—C12—H12120.4
C3—N1—C4116.3 (4)C7—C12—H12120.4
C6—N2—N3120.9 (3)C17—C13—C14117.6 (4)
C6—N2—H2124 (3)C17—C13—C18118.3 (3)
N3—N2—H2115 (3)C14—C13—C18124.1 (3)
N2—N3—S1112.5 (3)C15—C14—C13118.7 (4)
N2—N3—H3114 (3)C15—C14—H14120.6
S1—N3—H3109 (3)C13—C14—H14120.6
C15—N4—C16117.0 (4)N4—C15—C14123.9 (4)
C18—N5—N6118.1 (3)N4—C15—H15118.1
C18—N5—H5125 (3)C14—C15—H15118.1
N6—N5—H5114 (3)N4—C16—C17123.5 (4)
N5—N6—S2113.2 (2)N4—C16—H16118.2
N5—N6—H6111 (3)C17—C16—H16118.2
S2—N6—H6120 (3)C13—C17—C16119.2 (4)
C5—C1—C2117.5 (4)C13—C17—H17120.4
C5—C1—C6118.0 (4)C16—C17—H17120.4
C2—C1—C6124.5 (4)O4—C18—N5123.8 (3)
C1—C2—C3119.7 (4)O4—C18—C13121.0 (3)
C1—C2—H2A120.2N5—C18—C13115.2 (3)
C3—C2—H2A120.2C20—C19—C24121.0 (4)
N1—C3—C2123.8 (5)C20—C19—S2120.1 (3)
N1—C3—H3A118.1C24—C19—S2118.9 (3)
C2—C3—H3A118.1C19—C20—C21119.2 (5)
N1—C4—C5123.6 (4)C19—C20—H20120.4
N1—C4—H4118.2C21—C20—H20120.4
C5—C4—H4118.2C22—C21—C20120.1 (5)
C1—C5—C4119.0 (5)C22—C21—H21120.0
C1—C5—H5A120.5C20—C21—H21120.0
C4—C5—H5A120.5C21—C22—C23120.7 (4)
O1—C6—N2122.8 (4)C21—C22—Br2120.8 (4)
O1—C6—C1121.0 (3)C23—C22—Br2118.5 (4)
N2—C6—C1116.2 (3)C24—C23—C22119.8 (5)
C8—C7—C12121.3 (4)C24—C23—H23120.1
C8—C7—S1120.1 (3)C22—C23—H23120.1
C12—C7—S1118.4 (3)C23—C24—C19119.2 (4)
C7—C8—C9118.8 (4)C23—C24—H24120.4
C7—C8—H8120.6C19—C24—H24120.4
C6—N2—N3—S197.7 (4)Br1—C10—C11—C12180.0 (3)
O2—S1—N3—N260.2 (3)C10—C11—C12—C70.6 (6)
O3—S1—N3—N2171.2 (3)C8—C7—C12—C110.7 (6)
C7—S1—N3—N254.8 (3)S1—C7—C12—C11173.8 (3)
C18—N5—N6—S2103.9 (3)C17—C13—C14—C151.0 (6)
O5—S2—N6—N555.9 (3)C18—C13—C14—C15179.4 (4)
O6—S2—N6—N5175.8 (2)C16—N4—C15—C140.1 (7)
C19—S2—N6—N560.3 (3)C13—C14—C15—N41.2 (7)
C5—C1—C2—C31.4 (8)C15—N4—C16—C171.7 (6)
C6—C1—C2—C3177.8 (5)C14—C13—C17—C160.4 (6)
C4—N1—C3—C21.2 (9)C18—C13—C17—C16178.1 (3)
C1—C2—C3—N10.1 (10)N4—C16—C17—C131.8 (6)
C3—N1—C4—C50.8 (9)N6—N5—C18—O43.7 (5)
C2—C1—C5—C41.7 (8)N6—N5—C18—C13175.0 (3)
C6—C1—C5—C4177.5 (5)C17—C13—C18—O416.8 (5)
N1—C4—C5—C10.7 (9)C14—C13—C18—O4161.5 (4)
N3—N2—C6—O14.6 (6)C17—C13—C18—N5164.5 (3)
N3—N2—C6—C1174.9 (3)C14—C13—C18—N517.2 (5)
C5—C1—C6—O13.2 (6)O5—S2—C19—C2010.3 (4)
C2—C1—C6—O1176.0 (5)O6—S2—C19—C20143.0 (3)
C5—C1—C6—N2177.3 (4)N6—S2—C19—C20105.0 (4)
C2—C1—C6—N23.5 (6)O5—S2—C19—C24170.3 (3)
O2—S1—C7—C816.3 (4)O6—S2—C19—C2437.6 (4)
O3—S1—C7—C8149.7 (3)N6—S2—C19—C2474.4 (4)
N3—S1—C7—C897.9 (3)C24—C19—C20—C210.7 (7)
O2—S1—C7—C12169.1 (3)S2—C19—C20—C21178.7 (4)
O3—S1—C7—C1235.7 (4)C19—C20—C21—C220.0 (7)
N3—S1—C7—C1276.7 (3)C20—C21—C22—C230.6 (8)
C12—C7—C8—C91.1 (6)C20—C21—C22—Br2178.2 (4)
S1—C7—C8—C9173.4 (3)C21—C22—C23—C240.5 (8)
C7—C8—C9—C100.1 (7)Br2—C22—C23—C24178.3 (4)
C8—C9—C10—C111.2 (7)C22—C23—C24—C190.2 (7)
C8—C9—C10—Br1179.7 (3)C20—C19—C24—C230.8 (6)
C9—C10—C11—C121.6 (7)S2—C19—C24—C23178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.76 (4)2.15 (4)2.882 (4)165.09
N3—H3···N4ii0.78 (4)2.10 (4)2.868 (5)168.21
N6—H6···O6iii0.83 (4)2.26 (4)2.998 (4)147.35
N5—H5···N1iv0.83 (4)2.03 (4)2.847 (4)168.32
N3—H3···O10.78 (4)2.49 (4)2.732 (4)100 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10BrN3O3S
Mr356.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1229 (6), 19.0440 (12), 15.0640 (7)
β (°) 96.862 (2)
V3)2883.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.36 × 0.30 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.349, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
29398, 6601, 3473
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.01
No. of reflections6601
No. of parameters373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 0.88

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.76 (4)2.15 (4)2.882 (4)165.09
N3—H3···N4ii0.78 (4)2.10 (4)2.868 (5)168.21
N6—H6···O6iii0.83 (4)2.26 (4)2.998 (4)147.35
N5—H5···N1iv0.83 (4)2.03 (4)2.847 (4)168.32
N3—H3···O10.78 (4)2.49 (4)2.732 (4)100 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project of strengthening the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, W. W. (1967). Avian Dis., 11, 241–254.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCarvalho, S. A., de Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicenate, F. R. (2008). Bio. Med. Chem. Lett. 18, 538–541.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-Y., Song, X.-M. & Duan, L.-X. (2008). Acta Cryst. E64, o1880.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds