organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-nitro­styr­yl)benzene

aDepartment of Chemistry, Penn State Worthington Scranton, 120 Ridge View Drive, Dumore, Pennsylvania 18512, USA
*Correspondence e-mail: ptp2@psu.edu

(Received 3 June 2009; accepted 26 June 2009; online 11 July 2009)

The complete molecule of the title compound, C22H16N2O4, is generated by a crystallographic centre of inversion. The plane of the central aromatic ring is tilted by 11.85 (4)° with respect to the outer aromatic ring. The crystal packing is determined by van der Waals inter­actions, with stair-like stacking between adjacent aromatic rings. The stacks are staggered and each layer is approximately 3.8 Å from the next. The closest inter­molecular contact (approximately 2.42 Å) is between an O atom and a vinyl H atom.

Related literature

For background information on photonic materials, see: He et al. (2008[He, T., Wang, C., Pan, X., Yang, H. & Lu, G. (2008). Dyes Pigm. 82, 47-52.]). For stilbenes, see: Moreno-Fuquen et al. (2008[Moreno-Fuquen, R., Aguirre, L. & Kennedy, A. R. (2008). Acta Cryst. E64, o2259.], 2009[Moreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.]). For the synthesis, see: Borsche (1912[Borsche, W. (1912). Justus Liebigs Ann. Chem. 386, 351-73.]); Nakatsuji et al. (1991[Nakatsuji, S., Akiyama, S., Katzerb, G. & Fabian, W. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 861-867.]). For a related structure, see: Bazan et al. (2000[Bazan, G., Bartholomew, G., Bu, X. & Lachicotte, R. (2000). Chem. Mater. 12, 1422-1430.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O4

  • Mr = 372.37

  • Monoclinic, P 21 /c

  • a = 7.4689 (12) Å

  • b = 16.615 (3) Å

  • c = 7.3917 (12) Å

  • β = 108.824 (3)°

  • V = 868.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.40 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART Platform CCD diffractometer

  • Absorption correction: none

  • 10088 measured reflections

  • 2001 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 1.02

  • 2001 reflections

  • 159 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Distyrylbenzene derivatives have been studied as laser dyes, components of organic light-emitting diodes, and as model compounds for the study of conductivity and molecular properties in substituted p-phenylenevinylene (PPV) polymers. For background information on photonic materials, see: He et al. (2008). For related systems of stilbene, see: Moreno-Fuquen et al. (2008, 2009). For literature related to the synthesis, see: Borsche (1912).

Related literature top

For background information on photonic materials, see: He et al. (2008). For stilbenes, see: Moreno-Fuquen et al. (2008, 2009). For the synthesis, see: Borsche (1912); Nakatsuji et al. (1991). For a related structure, see: Bazan et al. (2000).

Experimental top

Synthesis was carried out following literature procedures (Nakatsuj) by standard Wittig synthesis. To a mixture of p-phenylenedimethylene- bis(tripheny1phosphonium chloride) (1.00 g, 1.43 mmol) and p-nitrobenzaldehyde (0.432 g 2.86 mmol) in EtOH (10 ml) was added 0.2 mol/L EtOLi(20 ml, 4.0 mmol) and the mixture was stirred overnight. The resulting reaction mixture was poured into water to give a yellow precipitate (0.4 g, 75%) which was filtered off, washed with EtOH, dried under reduced pressure, m.p. 289–290. Crystallization attempts from various solvents yielded only powders. Yellowish orange crystals however were grown by sublimation.

Refinement top

All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1,4-di(4-nitrostyryl)benzene with atom lables.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis.
1,4-Bis(4-nitrostyryl)benzene top
Crystal data top
C22H16N2O4F(000) = 388
Mr = 372.37Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 851 reflections
a = 7.4689 (12) Åθ = 2.5–27.5°
b = 16.615 (3) ŵ = 0.10 mm1
c = 7.3917 (12) ÅT = 173 K
β = 108.824 (3)°Needle, yellow
V = 868.2 (2) Å30.40 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART Platform CCD
diffractometer
1486 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 99
10088 measured reflectionsk = 2121
2001 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1981P]
where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H16N2O4V = 868.2 (2) Å3
Mr = 372.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4689 (12) ŵ = 0.10 mm1
b = 16.615 (3) ÅT = 173 K
c = 7.3917 (12) Å0.40 × 0.18 × 0.12 mm
β = 108.824 (3)°
Data collection top
Bruker SMART Platform CCD
diffractometer
1486 reflections with I > 2σ(I)
10088 measured reflectionsRint = 0.041
2001 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.02Δρmax = 0.30 e Å3
2001 reflectionsΔρmin = 0.18 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18351 (16)0.18081 (7)0.31257 (17)0.0314 (3)
O10.31485 (14)0.14204 (7)0.29133 (16)0.0424 (3)
O20.20374 (14)0.23244 (7)0.43745 (15)0.0415 (3)
C10.00888 (18)0.16483 (8)0.18509 (19)0.0268 (3)
C20.03516 (19)0.10424 (8)0.0511 (2)0.0293 (3)
H20.068 (2)0.0758 (9)0.037 (2)0.034 (4)*
C30.2169 (2)0.08605 (8)0.0623 (2)0.0299 (3)
H30.234 (2)0.0439 (10)0.154 (2)0.036 (4)*
C40.37281 (19)0.12795 (8)0.04412 (18)0.0274 (3)
C50.3394 (2)0.19080 (9)0.0888 (2)0.0309 (3)
H50.440 (2)0.2209 (9)0.102 (2)0.032 (4)*
C60.1573 (2)0.20926 (9)0.2043 (2)0.0302 (3)
H60.137 (2)0.2519 (10)0.294 (2)0.037 (4)*
C70.56766 (19)0.10807 (9)0.1593 (2)0.0304 (3)
H70.659 (2)0.1468 (9)0.145 (2)0.036 (4)*
C80.62118 (19)0.04369 (9)0.27155 (19)0.0296 (3)
H80.530 (2)0.0058 (9)0.282 (2)0.027 (4)*
C90.81506 (18)0.02312 (8)0.38677 (18)0.0270 (3)
C100.9717 (2)0.07130 (9)0.39725 (19)0.0291 (3)
H100.959 (2)0.1202 (10)0.333 (2)0.040 (4)*
C110.8479 (2)0.04871 (9)0.49188 (19)0.0295 (3)
H110.740 (2)0.0827 (10)0.482 (2)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0255 (6)0.0340 (7)0.0330 (6)0.0040 (5)0.0072 (5)0.0046 (5)
O10.0245 (5)0.0545 (7)0.0467 (7)0.0036 (5)0.0091 (5)0.0009 (5)
O20.0348 (6)0.0417 (6)0.0426 (6)0.0100 (5)0.0050 (5)0.0105 (5)
C10.0224 (6)0.0296 (7)0.0267 (7)0.0041 (5)0.0054 (5)0.0038 (5)
C20.0261 (7)0.0292 (7)0.0330 (7)0.0030 (5)0.0103 (6)0.0011 (6)
C30.0309 (7)0.0280 (7)0.0299 (7)0.0001 (5)0.0087 (6)0.0026 (6)
C40.0267 (7)0.0279 (7)0.0260 (7)0.0015 (5)0.0064 (5)0.0017 (5)
C50.0246 (7)0.0322 (7)0.0355 (8)0.0021 (5)0.0093 (6)0.0031 (6)
C60.0295 (7)0.0293 (7)0.0312 (7)0.0027 (5)0.0089 (6)0.0056 (6)
C70.0244 (7)0.0331 (8)0.0314 (7)0.0010 (6)0.0059 (6)0.0005 (6)
C80.0260 (7)0.0312 (7)0.0300 (7)0.0002 (6)0.0071 (5)0.0017 (6)
C90.0278 (7)0.0301 (7)0.0221 (6)0.0037 (5)0.0066 (5)0.0032 (5)
C100.0313 (7)0.0283 (7)0.0268 (7)0.0034 (5)0.0082 (5)0.0026 (5)
C110.0270 (7)0.0313 (7)0.0294 (7)0.0008 (5)0.0082 (5)0.0011 (6)
Geometric parameters (Å, º) top
N1—O11.2253 (16)C5—H50.932 (16)
N1—O21.2332 (15)C6—H60.950 (16)
N1—C11.4661 (17)C7—C81.334 (2)
C1—C61.3765 (19)C7—H70.969 (16)
C1—C21.381 (2)C8—C91.4640 (19)
C2—C31.379 (2)C8—H80.951 (15)
C2—H20.940 (16)C9—C101.399 (2)
C3—C41.4001 (19)C9—C111.4020 (19)
C3—H30.953 (16)C10—C11i1.384 (2)
C4—C51.3999 (19)C10—H100.930 (17)
C4—C71.4670 (19)C11—C10i1.384 (2)
C5—C61.3868 (19)C11—H110.968 (17)
O1—N1—O2123.49 (12)C1—C6—C5118.71 (13)
O1—N1—C1118.79 (12)C1—C6—H6121.2 (10)
O2—N1—C1117.71 (11)C5—C6—H6120.1 (10)
C6—C1—C2122.13 (12)C8—C7—C4125.71 (13)
C6—C1—N1119.44 (12)C8—C7—H7121.2 (9)
C2—C1—N1118.42 (12)C4—C7—H7113.1 (9)
C3—C2—C1118.68 (13)C7—C8—C9126.21 (14)
C3—C2—H2120.4 (9)C7—C8—H8120.2 (9)
C1—C2—H2120.9 (9)C9—C8—H8113.6 (9)
C2—C3—C4121.26 (13)C10—C9—C11117.57 (12)
C2—C3—H3118.2 (9)C10—C9—C8123.46 (13)
C4—C3—H3120.6 (9)C11—C9—C8118.97 (13)
C5—C4—C3118.20 (12)C11i—C10—C9120.98 (13)
C5—C4—C7119.61 (13)C11i—C10—H10117.5 (10)
C3—C4—C7122.18 (13)C9—C10—H10121.5 (10)
C6—C5—C4120.96 (13)C10i—C11—C9121.45 (13)
C6—C5—H5118.6 (9)C10i—C11—H11121.0 (9)
C4—C5—H5120.5 (9)C9—C11—H11117.6 (9)
O1—N1—C1—C6178.44 (12)N1—C1—C6—C5176.92 (12)
O2—N1—C1—C62.28 (19)C4—C5—C6—C10.4 (2)
O1—N1—C1—C22.67 (19)C5—C4—C7—C8170.57 (14)
O2—N1—C1—C2176.61 (12)C3—C4—C7—C89.5 (2)
C6—C1—C2—C32.3 (2)C4—C7—C8—C9179.87 (13)
N1—C1—C2—C3176.57 (12)C7—C8—C9—C101.9 (2)
C1—C2—C3—C40.3 (2)C7—C8—C9—C11177.62 (13)
C2—C3—C4—C51.9 (2)C11—C9—C10—C11i0.2 (2)
C2—C3—C4—C7178.18 (13)C8—C9—C10—C11i179.77 (13)
C3—C4—C5—C62.3 (2)C10—C9—C11—C10i0.2 (2)
C7—C4—C5—C6177.80 (13)C8—C9—C11—C10i179.80 (13)
C2—C1—C6—C51.9 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H16N2O4
Mr372.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.4689 (12), 16.615 (3), 7.3917 (12)
β (°) 108.824 (3)
V3)868.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART Platform CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10088, 2001, 1486
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 1.02
No. of reflections2001
No. of parameters159
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

 

Acknowledgements

This work was supported in part by Research Development Grants from the Pennsylvania State University. The author also acknowledges Benjamin E. Kucera, Victor G. Young Jr, and the X-Ray Crystallographic Laboratory at the University of Minnesota.

References

First citationBazan, G., Bartholomew, G., Bu, X. & Lachicotte, R. (2000). Chem. Mater. 12, 1422–1430.  Google Scholar
First citationBorsche, W. (1912). Justus Liebigs Ann. Chem. 386, 351-73.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, T., Wang, C., Pan, X., Yang, H. & Lu, G. (2008). Dyes Pigm. 82, 47–52.  Web of Science CrossRef Google Scholar
First citationMoreno-Fuquen, R., Aguirre, L. & Kennedy, A. R. (2008). Acta Cryst. E64, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakatsuji, S., Akiyama, S., Katzerb, G. & Fabian, W. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 861–867.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds