metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ2-1,2-bis­­(imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]bis­­[di­chloridozinc(II)]

aDepartment of Biochemistry, College of Technology, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China, and bDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: h5399000@yahoo.cn

(Received 14 June 2009; accepted 10 July 2009; online 22 July 2009)

In the crystal structure of the centrosymmetric title compound, [Zn2Cl4(C14H14N4)2], the ZnII atom is coordinated by two N atoms from two 1,2-bis­(imidazol-1-ylmeth­yl)benzene ligands and two Cl atoms to confer a distorted tetra­hedral geometry at the metal center.

Related literature

For conformationally flexible ligands and their metal complexes, see: Carlucci et al. (2004[Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). Chem. Commun. pp. 380-381.]); Fan et al. (2005[Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552-558.]); Hennigar et al. (1997[Hennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972-973.]). For metal complexes of similar ligands, see: Liu et al. (2007[Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027-3037.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Tan et al. (2004[Tan, H. Y., Zhang, H. X., Ou, H. D. & Kang, B. S. (2004). Inorg. Chim. Acta, 357, 869-874.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2Cl4(C14H14N4)2]

  • Mr = 749.12

  • Triclinic, [P \overline 1]

  • a = 8.5502 (12) Å

  • b = 8.7267 (13) Å

  • c = 11.5726 (17) Å

  • α = 102.824 (2)°

  • β = 105.720 (2)°

  • γ = 91.763 (2)°

  • V = 806.6 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 291 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.709, Tmax = 0.809

  • 6327 measured reflections

  • 3130 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.09

  • 3130 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.000 (2)
Zn1—N2i 2.017 (2)
Zn1—Cl1 2.2309 (8)
Zn1—Cl2 2.2428 (8)
N1—Zn1—N2i 108.85 (9)
Cl1—Zn1—Cl2 116.46 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Conformationally non-rigid ligands, showing varied geometries that often lead to supramolecular isomers, (Moulton et al., 2001; Hennigar et al., 1997) can more easily produce new classes of compounds. 1,2-bis-(imidazol-1-ylmethyl)benzene, as one kind of those ligands, has usually been used to construct a great variety of structurally interesting entities, such as 1-D chain, 2-D and 3-D nets (Liu et al., 2007; Fan et al., 2005; Tan et al., 2004).

The coordination environment of the title compound(I) is illustrated in Fig.1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Zn crystallographically nonequivalent atom. The Zn atom is coordinated by two N atoms from 1,2-bis-(imidazol-1-ylmethyl)benzene and two Cl atom to give a slightly distorted tetrahedral geometry, forming a 0-D structrue. The crystal packing is stabilized by intermolecular π-π stacking interaction (Fig. 2).

Related literature top

For conformationally flexible ligands and their metal complexes, see; Carlucci et al. (2004); Fan et al. (2005); Hennigar et al. (1997). For metal complexes of similar ligands, see: Liu et al. (2007); Moulton & Zaworotko (2001); Tan et al. (2004).

Experimental top

To a test tube (f= 2 cm) containing 3 ml aqueous solution of ZnCl2 (0.006 g, 0.05 mmol) was added carefully a layer of THF as a buffer and then 5 ml of methanol solution of 1,2-bis-(imidazol-1-ylmethyl)benzene(0.027 g, 0.1 mmol). The system was allowed to stand for days, during which white crystals were formed in yield of ca 45%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å(aromatic) or 0.97 Å(aliphatic) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
Bis[µ2-1,2-bis(imidazol-1-ylmethyl)benzene- κ2N3:N3')]bis[dichloridozinc(II)] top
Crystal data top
[Zn2Cl4(C14H14N4)2]Z = 1
Mr = 749.12F(000) = 380
Triclinic, P1Dx = 1.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5502 (12) ÅCell parameters from 3130 reflections
b = 8.7267 (13) Åθ = 1.9–26.0°
c = 11.5726 (17) ŵ = 1.85 mm1
α = 102.824 (2)°T = 291 K
β = 105.720 (2)°Block, white
γ = 91.763 (2)°0.20 × 0.15 × 0.12 mm
V = 806.6 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.709, Tmax = 0.809k = 1010
6327 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3649P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn2Cl4(C14H14N4)2]γ = 91.763 (2)°
Mr = 749.12V = 806.6 (2) Å3
Triclinic, P1Z = 1
a = 8.5502 (12) ÅMo Kα radiation
b = 8.7267 (13) ŵ = 1.85 mm1
c = 11.5726 (17) ÅT = 291 K
α = 102.824 (2)°0.20 × 0.15 × 0.12 mm
β = 105.720 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2912 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.809Rint = 0.019
6327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
3130 reflectionsΔρmin = 0.27 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.77170 (3)0.60926 (3)0.29452 (3)0.03231 (11)
Cl10.67332 (9)0.68391 (9)0.11848 (6)0.04696 (19)
Cl21.02202 (9)0.52603 (9)0.32757 (7)0.04806 (19)
N10.6030 (3)0.4485 (3)0.2991 (2)0.0369 (5)
N20.2055 (3)0.2012 (2)0.56368 (19)0.0345 (5)
N30.3737 (3)0.2956 (2)0.2378 (2)0.0348 (5)
N40.1141 (3)0.0502 (3)0.37642 (19)0.0355 (5)
C10.1171 (3)0.0585 (3)0.1590 (2)0.0354 (6)
C20.2061 (3)0.0452 (3)0.1196 (2)0.0340 (6)
C30.1073 (3)0.1879 (3)0.4517 (2)0.0360 (6)
H30.04150.26500.42820.043*
C40.2099 (3)0.2226 (3)0.1610 (3)0.0397 (6)
H4A0.17740.26630.08900.048*
H4B0.13210.24790.20810.048*
C50.4628 (3)0.4045 (3)0.2123 (2)0.0372 (6)
H50.43030.44450.14230.045*
C60.0157 (3)0.0051 (4)0.2462 (2)0.0444 (7)
H6A0.04540.07980.22140.053*
H6B0.06230.09210.23930.053*
C70.2892 (3)0.0154 (4)0.0350 (3)0.0430 (7)
H70.34760.05350.00760.052*
C80.1177 (4)0.2205 (3)0.1138 (3)0.0466 (7)
H80.06010.29090.14070.056*
C90.4618 (4)0.2681 (4)0.3476 (3)0.0526 (8)
H90.43050.19790.38880.063*
C100.2212 (4)0.0315 (3)0.4443 (3)0.0493 (7)
H100.24970.13220.41670.059*
C110.2777 (4)0.0627 (3)0.5594 (3)0.0465 (7)
H110.35360.03770.62530.056*
C120.2873 (4)0.1759 (4)0.0095 (3)0.0529 (8)
H120.34400.21430.06630.063*
C130.2020 (4)0.2781 (4)0.0301 (3)0.0536 (8)
H130.20080.38640.00060.064*
C140.6028 (4)0.3625 (4)0.3844 (3)0.0503 (8)
H140.68650.36820.45640.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03700 (18)0.02838 (17)0.02722 (17)0.00505 (12)0.00577 (12)0.00311 (12)
Cl10.0514 (4)0.0511 (4)0.0332 (4)0.0078 (3)0.0000 (3)0.0161 (3)
Cl20.0478 (4)0.0450 (4)0.0513 (4)0.0128 (3)0.0123 (3)0.0126 (3)
N10.0403 (12)0.0338 (12)0.0311 (11)0.0096 (9)0.0042 (9)0.0056 (9)
N20.0405 (12)0.0316 (11)0.0282 (11)0.0006 (9)0.0081 (9)0.0028 (9)
N30.0337 (11)0.0323 (11)0.0355 (12)0.0045 (9)0.0059 (9)0.0078 (9)
N40.0420 (12)0.0327 (12)0.0289 (11)0.0066 (9)0.0111 (9)0.0012 (9)
C10.0353 (13)0.0378 (14)0.0267 (12)0.0059 (11)0.0060 (11)0.0004 (10)
C20.0315 (12)0.0367 (14)0.0289 (13)0.0000 (11)0.0036 (10)0.0044 (11)
C30.0409 (14)0.0315 (13)0.0331 (14)0.0015 (11)0.0096 (11)0.0041 (11)
C40.0315 (13)0.0351 (14)0.0472 (16)0.0006 (11)0.0063 (12)0.0057 (12)
C50.0425 (15)0.0348 (14)0.0312 (14)0.0041 (11)0.0059 (11)0.0079 (11)
C60.0414 (15)0.0506 (17)0.0320 (14)0.0166 (13)0.0093 (12)0.0048 (12)
C70.0387 (14)0.0509 (17)0.0423 (16)0.0027 (13)0.0159 (12)0.0119 (13)
C80.0583 (18)0.0347 (15)0.0396 (16)0.0110 (13)0.0089 (14)0.0028 (12)
C90.0502 (17)0.0552 (19)0.0521 (18)0.0132 (14)0.0030 (14)0.0290 (15)
C100.072 (2)0.0315 (15)0.0442 (17)0.0105 (14)0.0202 (15)0.0037 (12)
C110.0595 (18)0.0429 (16)0.0372 (15)0.0118 (14)0.0102 (14)0.0133 (13)
C120.0480 (17)0.061 (2)0.0457 (18)0.0137 (15)0.0163 (14)0.0000 (15)
C130.065 (2)0.0349 (16)0.0481 (18)0.0098 (14)0.0053 (15)0.0028 (13)
C140.0486 (17)0.0542 (19)0.0399 (16)0.0125 (14)0.0049 (13)0.0187 (14)
Geometric parameters (Å, º) top
Zn1—N12.000 (2)C3—H30.9300
Zn1—N2i2.017 (2)C4—H4A0.9700
Zn1—Cl12.2309 (8)C4—H4B0.9700
Zn1—Cl22.2428 (8)C5—H50.9300
N1—C51.320 (3)C6—H6A0.9700
N1—C141.366 (4)C6—H6B0.9700
N2—C31.317 (3)C7—C121.379 (4)
N2—C111.371 (4)C7—H70.9300
N2—Zn1i2.017 (2)C8—C131.377 (5)
N3—C51.330 (3)C8—H80.9300
N3—C91.366 (4)C9—C141.348 (4)
N3—C41.475 (3)C9—H90.9300
N4—C31.332 (3)C10—C111.350 (4)
N4—C101.365 (4)C10—H100.9300
N4—C61.476 (3)C11—H110.9300
C1—C21.392 (4)C12—C131.363 (5)
C1—C81.395 (4)C12—H120.9300
C1—C61.509 (4)C13—H130.9300
C2—C71.383 (4)C14—H140.9300
C2—C41.512 (4)
N1—Zn1—N2i108.85 (9)N1—C5—N3111.4 (2)
N1—Zn1—Cl1106.18 (7)N1—C5—H5124.3
N2i—Zn1—Cl1108.10 (7)N3—C5—H5124.3
N1—Zn1—Cl2112.82 (7)N4—C6—C1113.2 (2)
N2i—Zn1—Cl2104.18 (7)N4—C6—H6A108.9
Cl1—Zn1—Cl2116.46 (3)C1—C6—H6A108.9
C5—N1—C14105.8 (2)N4—C6—H6B108.9
C5—N1—Zn1123.62 (18)C1—C6—H6B108.9
C14—N1—Zn1130.57 (18)H6A—C6—H6B107.7
C3—N2—C11105.6 (2)C12—C7—C2121.4 (3)
C3—N2—Zn1i123.80 (18)C12—C7—H7119.3
C11—N2—Zn1i130.53 (19)C2—C7—H7119.3
C5—N3—C9107.0 (2)C13—C8—C1121.1 (3)
C5—N3—C4125.4 (2)C13—C8—H8119.4
C9—N3—C4127.6 (2)C1—C8—H8119.4
C3—N4—C10107.1 (2)C14—C9—N3106.7 (2)
C3—N4—C6125.6 (2)C14—C9—H9126.6
C10—N4—C6127.2 (2)N3—C9—H9126.6
C2—C1—C8118.8 (2)C11—C10—N4106.5 (2)
C2—C1—C6123.4 (2)C11—C10—H10126.7
C8—C1—C6117.8 (3)N4—C10—H10126.7
C7—C2—C1119.0 (2)C10—C11—N2109.2 (3)
C7—C2—C4118.3 (2)C10—C11—H11125.4
C1—C2—C4122.7 (2)N2—C11—H11125.4
N2—C3—N4111.5 (2)C13—C12—C7119.8 (3)
N2—C3—H3124.3C13—C12—H12120.1
N4—C3—H3124.3C7—C12—H12120.1
N3—C4—C2111.8 (2)C12—C13—C8119.9 (3)
N3—C4—H4A109.3C12—C13—H13120.1
C2—C4—H4A109.3C8—C13—H13120.1
N3—C4—H4B109.3C9—C14—N1109.1 (3)
C2—C4—H4B109.3C9—C14—H14125.4
H4A—C4—H4B107.9N1—C14—H14125.4
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2Cl4(C14H14N4)2]
Mr749.12
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.5502 (12), 8.7267 (13), 11.5726 (17)
α, β, γ (°)102.824 (2), 105.720 (2), 91.763 (2)
V3)806.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.709, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
6327, 3130, 2912
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.09
No. of reflections3130
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N12.000 (2)Zn1—Cl12.2309 (8)
Zn1—N2i2.017 (2)Zn1—Cl22.2428 (8)
N1—Zn1—N2i108.85 (9)Cl1—Zn1—Cl2116.46 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Foundation of Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2007QN05).

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2004). Chem. Commun. pp. 380–381.  Web of Science CSD CrossRef Google Scholar
First citationFan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552–558.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027–3037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, H. Y., Zhang, H. X., Ou, H. D. & Kang, B. S. (2004). Inorg. Chim. Acta, 357, 869–874.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds