organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-p-Phenyl­enediisonicotinamide monohydrate

aDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, and bCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: songli@zstu.edu.cn

(Received 22 June 2009; accepted 26 June 2009; online 4 July 2009)

The organic mol­ecule of the title compound, C18H14N4O2·H2O, lies on a center of inversion located at the centre of the central phenyl­ene ring. There are two half-molecules in the asymmetric unit. In the crystal, the mol­ecules are linked through by N—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecule, forming a layer structure. The layers inter­act by ππ inter­actions between the aromatic rings.

Related literature

For background to N,N′-p-phenylenediisonicotinamide complexes, see: Burchell et al. (2003[Burchell, T. J., Eisler, D. J., Jennings, M. C. & Puddephatt, R. J. (2003). Chem. Commun. pp. 2228-2229.], 2004[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550-5557.]); Niu et al. (2004[Niu, Y. Y., Song, Y. L., Wu, J., Hou, H. W., Zhu, Y. & Wang, X. (2004). Inorg. Chem. Commun. 7, 471-474.]); Pansanel et al. (2006[Pansanel, J., Jouaiti, A., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 71-76.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4O2·H2O

  • Mr = 336.35

  • Triclinic, [P \overline 1]

  • a = 6.9936 (14) Å

  • b = 10.852 (2) Å

  • c = 11.285 (2) Å

  • α = 95.98 (3)°

  • β = 106.36 (3)°

  • γ = 94.68 (3)°

  • V = 811.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.21 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (CrystalStructure; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.976, Tmax = 0.987

  • 7994 measured reflections

  • 3671 independent reflections

  • 1782 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.163

  • S = 1.10

  • 3671 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 2.00 2.847 (3) 160
N4—H4A⋯O1 0.88 2.12 2.968 (3) 161
O3—H15⋯N1 0.94 (4) 1.92 (4) 2.845 (3) 168 (3)
O3—H16⋯N3ii 0.87 (4) 2.01 (4) 2.849 (3) 162 (4)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y-1, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The incorporation of amide groups into organic ligands are of interests because of the existence of great and typical intermolecular hydrogen bondings. Furthermore, the bridging bis(pyridyl) ligands are good donors for building metal-organic frameworks (MOFs). As one example of bis(pyridyl) ligands with amide groups, N,N'-(biphenyl-4,4'-diyl)diisonicotinamide has been very less studied. Only a few examples built upon N,N'-(biphenyl-4,4'-diyl)diisonicotinamide and Cu(II), Hg(I) salts have been reported. However, the crystal structure of the ligand, N,N'-(biphenyl-4,4'-diyl)diisonicotinamide, has not been described in detail. Herein, we report the crystal structure and characterization of the title compound N,N'-(biphenyl-4,4'-diyl)diisonicotinamide.

The compound crystallizes in triclinic form in the space group P-1. As shown in Figure 1, the title compound, C18H14N4O2.H2O, contains an N,N'-(biphenyl-4,4'-diyl)diisonicotinamide molecule and a water solvent molecule. The bond lengths of the two independent parts of the C18H14N4O2 molecule display slight differences. The two C=O bonds of the amide groups are 1.223 (3) Å and 1.232 (3) Å long respectively. Individual molecules are connected through intermolecular N—H···O=C hydrogen bonds between amide groups The H(4 A)···O(1) distance is 2.12 Å and the N(4)···O(1) distance is 2.968 (3) Å. The N(4)—H(4 A)···O(1) angle is 161.3 °.

As shown in Figure 2, The molecules and the solvent water molecules are connected through the O—H···N hydrogen bonds between the water molecules and the pyridine groups or the amide groups (N(2)···O(3) = 2.847 (3) Å, O(3)···N(1) = 2.845 (3) Å, O(3)···N(3) = 2.849 (3) Å) to form a layer. The hydrogen bond geometry is listed in table 1. The layers pack via π-π interactions among the phenyl rings (Figure 3).

Related literature top

For background to N,N'-(biphenyl-4,4'-diyl)diisonicotinamide complexes, see: Burchell et al. (2003, 2004); Niu et al. (2004); Pansanel et al. (2006).

Experimental top

The synthesis of compound 1 was modified with reference to the literature methods (R. J. Puddephatt and H. W. Hou). Isonicotinic acid (4.924 g, 40.0 mmol) was refluxed in thionyl chloride (20 ml) for 4 h. Excess thionyl chloride was removed under vacuum leaving a colorless solid. The solid was suspended in tetrahydrofuran (80 ml) and then a solution of 1,4-phenylenediamine (1.622 g, 0.015 mol) in tetrahydrofuran (20 ml) was added. After 15 minutes of stirring, triethylamine (15.0 ml) was added. The solution was refluxed at 70 ?C for 6 h and cooled to room temperature. Removal of the excess solvents results in a great deal of light-yellow solid. A solution of K2CO3 (6.910 g, 50 mmol) in water (40 ml) was added into the solid. After 10 minutes of stirring, the white products were filtered, washed with water and ethanol. Yield: ca 82%. Well shaped colorless crystals were obtained by slow evaporation of DMF/THF solution. 1H NMR (400 MHz, DMSO): 1H 7.781 (s, 4H), 7.879 (d, 4H), 8.786 (d, 4H), 10.527 (s, 2H). Anal. Calcd for C18H16N4O3: C 64.28, H 4.79, N 16.66. Found (%): C 64.12, H 4.91, N 16.78. IR (KBr pellet, cm-1): 3329(s), 1647(s), 1611(m), 1593(sh), 1547(s), 1522(s), 1506(sh), 1485(w), 1413(m), 1321(m), 1276(w), 1219(w), 1066(w), 827(m), 756(w), 667(m).

Refinement top

The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were added at calculated positions and refined using a riding model, except that two hydrogen atoms of the solvent water were picked out by Difference Fourier Syntheses. The structure was refined on F2 using SHELXTL97 software package(Sheldrick et al., 2008) without any unusual events.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure and labeling of compound 1, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The layer formed through the intermolecular hydrogen bonds.
[Figure 3] Fig. 3. The packing diagram viewed along the a-direction.
N,N'-p-Phenylenediisonicotinamide monohydrate top
Crystal data top
C18H14N4O2·H2OZ = 2
Mr = 336.35F(000) = 352
Triclinic, P1Dx = 1.376 Mg m3
a = 6.9936 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.852 (2) Åθ = 3.1–27.5°
c = 11.285 (2) ŵ = 0.10 mm1
α = 95.98 (3)°T = 296 K
β = 106.36 (3)°Block, colorless
γ = 94.68 (3)°0.32 × 0.21 × 0.13 mm
V = 811.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3671 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalStructure; Rigaku/MSC, 2004)
h = 98
Tmin = 0.976, Tmax = 0.987k = 1413
7994 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0836P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3671 reflectionsΔρmax = 0.24 e Å3
235 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Crystal data top
C18H14N4O2·H2Oγ = 94.68 (3)°
Mr = 336.35V = 811.8 (3) Å3
Triclinic, P1Z = 2
a = 6.9936 (14) ÅMo Kα radiation
b = 10.852 (2) ŵ = 0.10 mm1
c = 11.285 (2) ÅT = 296 K
α = 95.98 (3)°0.32 × 0.21 × 0.13 mm
β = 106.36 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3671 independent reflections
Absorption correction: multi-scan
(CrystalStructure; Rigaku/MSC, 2004)
1782 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.987Rint = 0.039
7994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.24 e Å3
3671 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5143 (3)0.75658 (16)0.44339 (18)0.0695 (6)
N10.3107 (4)0.4128 (2)0.0888 (2)0.0784 (8)
C10.2062 (5)0.4882 (3)0.1391 (3)0.0791 (9)
H10.06450.46910.11500.095*
O20.1628 (3)0.77553 (17)0.78063 (19)0.0773 (6)
N20.7556 (3)0.79239 (16)0.34696 (18)0.0511 (5)
H2A0.79460.76540.28220.061*
C20.2908 (4)0.5924 (2)0.2241 (3)0.0667 (7)
H20.20900.64360.25690.080*
O30.1253 (3)0.2348 (2)0.12516 (19)0.0774 (7)
N30.7983 (4)1.0595 (2)0.8737 (2)0.0693 (7)
C30.4971 (4)0.6211 (2)0.2608 (2)0.0507 (6)
N40.2782 (3)0.70930 (17)0.61858 (19)0.0545 (5)
H4A0.37160.72660.58250.065*
C40.6076 (4)0.5436 (2)0.2091 (2)0.0557 (7)
H40.74950.56070.23130.067*
C50.5096 (5)0.4414 (2)0.1251 (3)0.0680 (8)
H50.58770.38820.09110.082*
C60.5894 (4)0.7301 (2)0.3589 (2)0.0522 (6)
C70.8750 (3)0.89703 (19)0.4275 (2)0.0458 (6)
C80.8041 (4)0.9772 (2)0.5031 (2)0.0558 (7)
H80.66980.96250.50580.067*
C91.0706 (4)0.9205 (2)0.4249 (2)0.0556 (6)
H91.12010.86530.37250.067*
C100.6170 (4)1.0792 (2)0.8812 (3)0.0671 (8)
H100.60151.15720.92190.081*
C110.4505 (4)0.9927 (2)0.8333 (2)0.0582 (7)
H110.32431.01050.84260.070*
C120.4690 (4)0.8799 (2)0.7717 (2)0.0517 (6)
C130.6558 (4)0.8578 (2)0.7638 (3)0.0612 (7)
H130.67480.78100.72240.073*
C140.8155 (4)0.9488 (3)0.8169 (3)0.0712 (8)
H140.94470.93160.81280.085*
C150.2873 (4)0.7842 (2)0.7236 (3)0.0558 (6)
H150.173 (6)0.289 (3)0.050 (4)0.135 (14)*
C160.1331 (3)0.6052 (2)0.5602 (2)0.0483 (6)
H160.026 (6)0.191 (4)0.110 (4)0.130 (14)*
C170.0548 (4)0.5897 (2)0.5761 (2)0.0569 (7)
H170.09390.65100.62830.068*
C180.1870 (4)0.5146 (2)0.4836 (2)0.0563 (7)
H180.31650.52440.47200.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0723 (13)0.0736 (12)0.0619 (12)0.0209 (9)0.0365 (11)0.0191 (9)
N10.101 (2)0.0679 (15)0.0548 (16)0.0267 (14)0.0189 (15)0.0060 (12)
C10.070 (2)0.091 (2)0.0567 (19)0.0302 (16)0.0055 (16)0.0115 (16)
O20.0662 (13)0.0869 (13)0.0788 (15)0.0163 (10)0.0395 (11)0.0206 (10)
N20.0530 (12)0.0506 (11)0.0433 (12)0.0092 (9)0.0136 (9)0.0091 (8)
C20.0580 (17)0.0734 (17)0.0593 (18)0.0111 (13)0.0120 (14)0.0043 (14)
O30.0852 (15)0.0810 (13)0.0592 (13)0.0318 (11)0.0332 (12)0.0226 (10)
N30.0677 (16)0.0679 (14)0.0659 (16)0.0140 (11)0.0201 (13)0.0044 (12)
C30.0562 (16)0.0519 (13)0.0396 (14)0.0060 (11)0.0122 (12)0.0012 (10)
N40.0539 (13)0.0534 (11)0.0528 (13)0.0095 (9)0.0181 (10)0.0038 (9)
C40.0661 (17)0.0486 (13)0.0466 (15)0.0039 (11)0.0126 (13)0.0002 (11)
C50.094 (2)0.0542 (15)0.0542 (17)0.0023 (14)0.0240 (16)0.0021 (12)
C60.0523 (15)0.0524 (14)0.0472 (15)0.0070 (11)0.0130 (12)0.0000 (11)
C70.0471 (14)0.0471 (12)0.0387 (13)0.0033 (10)0.0110 (11)0.0035 (10)
C80.0473 (14)0.0605 (14)0.0546 (16)0.0063 (11)0.0176 (12)0.0122 (12)
C90.0536 (15)0.0536 (13)0.0558 (16)0.0037 (11)0.0198 (13)0.0126 (11)
C100.071 (2)0.0572 (15)0.0680 (19)0.0055 (13)0.0215 (16)0.0059 (13)
C110.0575 (16)0.0543 (14)0.0620 (17)0.0015 (11)0.0206 (14)0.0006 (12)
C120.0530 (16)0.0498 (13)0.0489 (15)0.0001 (10)0.0123 (12)0.0032 (11)
C130.0532 (16)0.0585 (15)0.0693 (19)0.0023 (12)0.0219 (14)0.0072 (13)
C140.0575 (18)0.0773 (18)0.075 (2)0.0038 (14)0.0213 (15)0.0022 (15)
C150.0544 (16)0.0547 (14)0.0558 (17)0.0018 (11)0.0171 (13)0.0006 (12)
C160.0444 (14)0.0488 (13)0.0488 (15)0.0018 (10)0.0121 (11)0.0030 (11)
C170.0500 (15)0.0582 (14)0.0600 (17)0.0005 (11)0.0188 (13)0.0058 (12)
C180.0470 (15)0.0604 (15)0.0599 (17)0.0030 (11)0.0194 (13)0.0031 (12)
Geometric parameters (Å, º) top
O1—C61.232 (3)C5—H50.9500
N1—C11.327 (4)C7—C81.372 (3)
N1—C51.335 (4)C7—C91.380 (3)
C1—C21.375 (4)C8—C9i1.383 (3)
C1—H10.9500C8—H80.9500
O2—C151.223 (3)C9—C8i1.383 (3)
N2—C61.343 (3)C9—H90.9500
N2—C71.420 (3)C10—C111.375 (3)
N2—H2A0.8800C10—H100.9500
C2—C31.383 (3)C11—C121.377 (3)
C2—H20.9500C11—H110.9500
O3—H150.94 (4)C12—C131.373 (3)
O3—H160.87 (4)C12—C151.506 (3)
N3—C101.327 (3)C13—C141.378 (4)
N3—C141.333 (3)C13—H130.9500
C3—C41.379 (3)C14—H140.9500
C3—C61.498 (3)C16—C171.375 (3)
N4—C151.348 (3)C16—C181.387 (3)
N4—C161.422 (3)C17—C18ii1.382 (3)
N4—H4A0.8800C17—H170.9500
C4—C51.375 (3)C18—C17ii1.382 (3)
C4—H40.9500C18—H180.9500
C1—N1—C5116.7 (2)C9i—C8—H8120.2
N1—C1—C2124.0 (3)C7—C9—C8i121.2 (2)
N1—C1—H1118.0C7—C9—H9119.4
C2—C1—H1118.0C8i—C9—H9119.4
C6—N2—C7127.0 (2)N3—C10—C11123.5 (2)
C6—N2—H2A116.5N3—C10—H10118.2
C7—N2—H2A116.5C11—C10—H10118.2
C1—C2—C3118.8 (3)C10—C11—C12119.2 (2)
C1—C2—H2120.6C10—C11—H11120.4
C3—C2—H2120.6C12—C11—H11120.4
H15—O3—H16100 (3)C13—C12—C11118.0 (2)
C10—N3—C14116.8 (2)C13—C12—C15123.2 (2)
C4—C3—C2117.9 (2)C11—C12—C15118.7 (2)
C4—C3—C6123.4 (2)C12—C13—C14119.0 (2)
C2—C3—C6118.6 (2)C12—C13—H13120.5
C15—N4—C16126.6 (2)C14—C13—H13120.5
C15—N4—H4A116.7N3—C14—C13123.5 (3)
C16—N4—H4A116.7N3—C14—H14118.3
C5—C4—C3119.1 (3)C13—C14—H14118.3
C5—C4—H4120.5O2—C15—N4124.2 (2)
C3—C4—H4120.5O2—C15—C12120.4 (2)
N1—C5—C4123.5 (3)N4—C15—C12115.4 (2)
N1—C5—H5118.2C17—C16—C18118.9 (2)
C4—C5—H5118.2C17—C16—N4123.8 (2)
O1—C6—N2124.6 (2)C18—C16—N4117.3 (2)
O1—C6—C3120.3 (2)C16—C17—C18ii120.2 (2)
N2—C6—C3115.1 (2)C16—C17—H17119.9
C8—C7—C9119.1 (2)C18ii—C17—H17119.9
C8—C7—N2123.6 (2)C17ii—C18—C16120.8 (2)
C9—C7—N2117.2 (2)C17ii—C18—H18119.6
C7—C8—C9i119.6 (2)C16—C18—H18119.6
C7—C8—H8120.2
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3iii0.882.002.847 (3)160
N4—H4A···O10.882.122.968 (3)161
O3—H15···N10.94 (4)1.92 (4)2.845 (3)168 (3)
O3—H16···N3iv0.87 (4)2.01 (4)2.849 (3)162 (4)
Symmetry codes: (iii) x+1, y+1, z; (iv) x1, y1, z1.

Experimental details

Crystal data
Chemical formulaC18H14N4O2·H2O
Mr336.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9936 (14), 10.852 (2), 11.285 (2)
α, β, γ (°)95.98 (3), 106.36 (3), 94.68 (3)
V3)811.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.21 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(CrystalStructure; Rigaku/MSC, 2004)
Tmin, Tmax0.976, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7994, 3671, 1782
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.163, 1.10
No. of reflections3671
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.882.002.847 (3)160.2
N4—H4A···O10.882.122.968 (3)161.3
O3—H15···N10.94 (4)1.92 (4)2.845 (3)168 (3)
O3—H16···N3ii0.87 (4)2.01 (4)2.849 (3)162 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z1.
 

Acknowledgements

We are grateful for financial support from the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. 20070358), the Analysis and Testing Foundation of Zhejiang Province (grant Nos. 2008F70034 and 2008F70053), the National Natural Science Foundation of China (grant No. 20803070) and the Young Scientists Fund of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education (grant No. 2007QN01).

References

First citationBurchell, T. J., Eisler, D. J., Jennings, M. C. & Puddephatt, R. J. (2003). Chem. Commun. pp. 2228–2229.  Web of Science CSD CrossRef Google Scholar
First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550–5557.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNiu, Y. Y., Song, Y. L., Wu, J., Hou, H. W., Zhu, Y. & Wang, X. (2004). Inorg. Chem. Commun. 7, 471–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationPansanel, J., Jouaiti, A., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 71–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds