metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m844-m845

Di-μ-sulfato-κ4O:O′-bis­­[di­aqua­(1H-imidazo[4,5-f][1,10]phenanthroline-κ2N7,N9)cobalt(II)] dihydrate

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China, and bDepartment of Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
*Correspondence e-mail: gongyun7211@yahoo.com.cn

(Received 23 June 2009; accepted 24 June 2009; online 1 July 2009)

In the centrosymmetric dinuclear title compound, [Co2(SO4)2(C13H8N4)2(H2O)4]·2H2O, the CoII atom is coord­in­ated by two N atoms from two 1H-imidazo[4,5-f][1,10]phenanthroline ligands, two O atoms from two sulfate anions and two O atoms from water mol­ecules in a distorted octa­hedral geometry. The Co⋯Co separation is 5.1167 (7) Å. The coordinated and uncoordinated water mol­ecules engage in N—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For related compounds, see: Jing et al. (2000[Jing, B. W., Wu, T., Tian, C. H., Zhang, M. H. & Shen, T. (2000). Bull. Chem. Soc. Jpn, 73, 1749-1755.], 2004[Jing, B. W., Zhang, M. H. & Shen, T. (2004). Spectrochim. Acta Part A, 60, 2635-2641.]); Nagababu & Satyanarayana (2007[Nagababu, P. & Satyanarayana, S. (2007). Polyhedron, 26, 1686-1692.]); Selvi & Palaniandavar (2002[Selvi, P. T. & Palaniandavar, M. (2002). Inorg. Chim. Acta, 337, 420-428.]); Shavaleev et al. (2007[Shavaleev, N. M., Adams, H. & Weinstein, J. A. (2007). Inorg. Chim. Acta, 360, 700-704.]); Wang et al. (2008[Wang, H., Liu, J. Q., Zhang, Y. N., Wang, Y. Y., Wen, G. L., Guo, C. Y. & Shi, Q. Z. (2008). Inorg. Chem. Commun. 11, 129-133.]); Wu et al. (1997[Wu, J. Z., Ye, B. H., Wang, L., Ji, L. N., Zhou, J. Y., Li, R. H. & Zhou, Z. Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395-1401.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(SO4)2(C13H8N4)2(H2O)4]·2H2O

  • Mr = 858.54

  • Monoclinic, P 21 /c

  • a = 10.3160 (13) Å

  • b = 9.0716 (10) Å

  • c = 16.8549 (17) Å

  • β = 99.1040 (10)°

  • V = 1557.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 298 K

  • 0.43 × 0.36 × 0.22 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.581, Tmax = 0.754

  • 7558 measured reflections

  • 2742 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.07

  • 2742 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.124 (2)
Co1—N2 2.137 (2)
Co1—O6 2.0654 (19)
Co1—O1 2.0889 (17)
Co1—O2 2.0978 (17)
Co1—O5 2.1468 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.86 2.05 2.886 (3) 165
O5—H5A⋯O3 0.85 1.94 2.764 (2) 165
O6—H6B⋯O7ii 0.85 1.79 2.634 (3) 174
O7—H7B⋯O3iii 0.85 2.00 2.843 (3) 176
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transitional metal complexes with the diimine ligands have potential applications in catalysis, molecular adsorption, magnetism, nonlinear optics, and molecular sensing. Imidazo[4,5-f]-1,10- phenanthroline (IP) ligand possesses good coordination ability due to the hetercyclic nitrogen atoms in the structure. The IP ligand is easy to prepare and modify and therefore have recently gained a lot of interest with respect to synthesis of its novel metal compounds. Most of its metal complexes are focused on Pt complexes (Shavaleev, et al., 2007) and Ru complexes (Wu, et al., 1997; Jing, et al., 2000; Jing, et al., 2004). Several Co-IP complexes have been reported in the presence of co-ligands such as 1,10-phenanthroline, 2,2'-bipyridine or ethylenediamine (Selvi, et al., 2002; Nagababu, et al., 2007). A Ni-IP complex has been reported recently (Wang, et al., 2008), which exhibits a mononuclear structure. In the present paper, we hydrothermally synthesized a novel coordination complex constructed from CoSO4 and IP.

The molecular structure of the complex (I) (Fig. 1) has one Co(II), one IP, two coordinated water molecules, one sulfuric anion and one dissociated water molecule in its asymmetric unit. The Co(II) center is six-coordinated by two nitrogen atoms from two IP ligands, two oxygen atoms from water and two oxygen atoms from two sulfuric anions in a distorted octahedral geometry. Each IP ligand is chelate-coordinated to one Co(II) with two nitrogen atoms uncoordinated (Fig.1). Two sulfuric anions bridge two Co(II) centers to form a dinuclear cobalt clusters with the Co···Co separation of 5.1167 (7) Å (Fig. 1). Strong hydrogen bonds exist in the structure (Table 2).

Strong ππ stacking interactions are observed in the structure. For example: Aromatic phenyl rings 1 and 2 are composed of C4, C5, C6, C7, C11, C12 and C4A, C5A, C6A, C7A, C11A, C12A (atom with additional label A refers to the symmetry operation: 2- x, - y, - z). The perpendicular distance and the centroid-centroid distance are 3.41Å, and 4.251 (6)Å, respectively.

Related literature top

For related compounds, see: Jing et al. (2000, 2004); Nagababu et al. (2007); Selvi et al. (2002); Shavaleev et al. (2007); Wang et al. (2008); Wu et al. (1997).

Experimental top

The ligand IP was synthesised according to the procedure published already (Wu, et al., 1997). Yield: 87%. HNMR (DMSO-d6): 9.06(dd, 2H), 8.87(d, 2H), 8.50(s, 1H), 7.83(dd, 2H).

A mixture of IP (0.05 mmol, 0.011 g), CoSO47H2O (0.1 mmol, 0.028 g), KSCN (0.1mmol, 0.010g ) and water (8 ml) was put into a Teflon-lined autoclave. The reaction mixture was heated at 120 centigrade for two day, followed by slow cooling to room temperatrue and brown single crystals were collected. Elemental analyse found: C, 36.36; H, 3.26; N, 13.05%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for methyl H atoms, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C) for amino H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 30% probability level (H atoms omitted for clarity). [Symmetry codes: (i) -1-x,1-y,-z.]
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds.
Di-µ-sulfato-κ4O:O'-bis[diaqua(imidazo[4,5- f][1,10]phenanthroline-κ2N7,N9)cobalt(II)] dihydrate top
Crystal data top
[Co2(SO4)2(C13H8N4)2(H2O)4]·2H2OF(000) = 876
Mr = 858.54Dx = 1.831 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7558 reflections
a = 10.3160 (13) Åθ = 2.0–25.0°
b = 9.0716 (10) ŵ = 1.29 mm1
c = 16.8549 (17) ÅT = 298 K
β = 99.104 (1)°Block, brown
V = 1557.5 (3) Å30.43 × 0.36 × 0.22 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2742 independent reflections
Radiation source: fine-focus sealed tube2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 128
Tmin = 0.581, Tmax = 0.754k = 1010
7558 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.5148P]
where P = (Fo2 + 2Fc2)/3
2742 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co2(SO4)2(C13H8N4)2(H2O)4]·2H2OV = 1557.5 (3) Å3
Mr = 858.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.3160 (13) ŵ = 1.29 mm1
b = 9.0716 (10) ÅT = 298 K
c = 16.8549 (17) Å0.43 × 0.36 × 0.22 mm
β = 99.104 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2742 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2329 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.754Rint = 0.020
7558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.07Δρmax = 0.63 e Å3
2742 reflectionsΔρmin = 0.36 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.68903 (3)0.31926 (4)0.04124 (2)0.02494 (12)
N10.8745 (2)0.3237 (2)0.11677 (12)0.0266 (5)
N20.75649 (19)0.0980 (2)0.03284 (12)0.0254 (5)
N31.2464 (2)0.0127 (2)0.20274 (13)0.0326 (5)
H31.30690.03800.23150.039*
N41.1436 (2)0.2056 (2)0.13930 (13)0.0339 (5)
O10.53904 (16)0.29041 (18)0.05637 (10)0.0302 (4)
O20.63548 (17)0.53058 (18)0.07489 (11)0.0339 (4)
O30.56078 (16)0.51259 (19)0.13340 (10)0.0307 (4)
O40.40919 (19)0.3224 (2)0.18590 (11)0.0399 (5)
O50.79510 (17)0.4343 (2)0.03947 (10)0.0323 (4)
H5A0.73070.47260.07030.039*
H5B0.82760.36900.06670.039*
O60.5767 (2)0.2368 (2)0.12221 (12)0.0472 (5)
H6A0.51510.29170.13300.057*
H6B0.57450.15550.14700.057*
O70.5866 (3)0.9854 (2)0.20115 (13)0.0658 (7)
H7A0.58360.89520.18730.079*
H7B0.58220.98960.25100.079*
S10.46794 (6)0.39915 (6)0.11220 (4)0.02442 (15)
C10.9322 (3)0.4409 (3)0.15383 (16)0.0312 (6)
H10.88670.52980.15010.037*
C21.0586 (3)0.4365 (3)0.19832 (16)0.0335 (6)
H21.09630.52120.22320.040*
C31.1263 (3)0.3062 (3)0.20491 (16)0.0322 (6)
H3A1.20970.30080.23520.039*
C41.0685 (2)0.1811 (3)0.16548 (14)0.0255 (5)
C50.9415 (2)0.1946 (3)0.12104 (14)0.0239 (5)
C60.8762 (2)0.0708 (3)0.07713 (14)0.0231 (5)
C70.9348 (2)0.0701 (3)0.08041 (14)0.0247 (5)
C80.8635 (3)0.1852 (3)0.03828 (16)0.0304 (6)
H80.89870.27970.03900.036*
C90.7410 (3)0.1567 (3)0.00397 (16)0.0333 (6)
H90.69160.23230.03100.040*
C100.6914 (2)0.0137 (3)0.00605 (15)0.0305 (6)
H100.60920.00440.03590.037*
C111.1259 (2)0.0376 (3)0.16564 (15)0.0265 (5)
C121.0637 (2)0.0818 (3)0.12648 (15)0.0260 (5)
C131.2505 (3)0.1568 (3)0.18502 (17)0.0378 (7)
H131.32220.21670.20330.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02401 (19)0.02377 (19)0.0260 (2)0.00539 (14)0.00088 (13)0.00188 (14)
N10.0291 (11)0.0243 (11)0.0257 (11)0.0054 (9)0.0026 (9)0.0006 (9)
N20.0233 (11)0.0275 (11)0.0246 (11)0.0037 (9)0.0015 (8)0.0013 (9)
N30.0276 (11)0.0378 (12)0.0288 (12)0.0042 (10)0.0068 (9)0.0011 (10)
N40.0355 (12)0.0316 (12)0.0328 (13)0.0118 (10)0.0004 (10)0.0020 (10)
O10.0297 (9)0.0255 (9)0.0323 (10)0.0025 (7)0.0046 (8)0.0043 (8)
O20.0317 (10)0.0241 (9)0.0478 (11)0.0049 (8)0.0117 (8)0.0021 (8)
O30.0310 (9)0.0289 (9)0.0325 (10)0.0035 (8)0.0061 (8)0.0049 (8)
O40.0504 (12)0.0338 (10)0.0302 (10)0.0044 (9)0.0102 (9)0.0075 (8)
O50.0311 (10)0.0350 (10)0.0307 (10)0.0052 (8)0.0044 (8)0.0005 (8)
O60.0587 (13)0.0317 (10)0.0586 (14)0.0165 (10)0.0318 (11)0.0167 (10)
O70.129 (2)0.0306 (11)0.0426 (13)0.0143 (13)0.0287 (14)0.0071 (10)
S10.0258 (3)0.0217 (3)0.0239 (3)0.0051 (2)0.0016 (2)0.0010 (2)
C10.0388 (15)0.0237 (13)0.0308 (14)0.0034 (11)0.0046 (11)0.0012 (11)
C20.0372 (15)0.0291 (14)0.0335 (15)0.0045 (12)0.0029 (12)0.0052 (11)
C30.0273 (13)0.0356 (15)0.0315 (15)0.0006 (11)0.0023 (11)0.0032 (12)
C40.0254 (13)0.0284 (13)0.0224 (13)0.0026 (11)0.0025 (10)0.0003 (10)
C50.0257 (13)0.0232 (12)0.0228 (13)0.0039 (10)0.0037 (10)0.0014 (10)
C60.0246 (12)0.0233 (12)0.0211 (12)0.0029 (10)0.0029 (10)0.0020 (10)
C70.0275 (13)0.0249 (12)0.0219 (13)0.0021 (10)0.0046 (10)0.0035 (10)
C80.0370 (14)0.0219 (13)0.0320 (14)0.0029 (11)0.0051 (11)0.0001 (11)
C90.0349 (15)0.0283 (14)0.0349 (15)0.0056 (11)0.0002 (12)0.0039 (12)
C100.0245 (13)0.0341 (14)0.0309 (14)0.0003 (11)0.0015 (10)0.0023 (12)
C110.0245 (12)0.0303 (13)0.0240 (13)0.0058 (11)0.0014 (10)0.0030 (11)
C120.0284 (13)0.0267 (13)0.0230 (13)0.0071 (10)0.0047 (10)0.0029 (10)
C130.0368 (16)0.0401 (16)0.0341 (16)0.0169 (13)0.0021 (12)0.0036 (12)
Geometric parameters (Å, º) top
Co1—N12.124 (2)O7—H7A0.8500
Co1—N22.137 (2)O7—H7B0.8500
Co1—O62.0654 (19)S1—O2i1.4671 (18)
Co1—O12.0889 (17)C1—C21.398 (4)
Co1—O22.0978 (17)C1—H10.9300
Co1—O52.1468 (18)C2—C31.369 (4)
N1—C11.326 (3)C2—H20.9300
N1—C51.356 (3)C3—C41.400 (3)
N2—C101.330 (3)C3—H3A0.9300
N2—C61.360 (3)C4—C51.408 (3)
N3—C131.343 (3)C4—C111.430 (3)
N3—C111.378 (3)C5—C61.451 (3)
N3—H30.8600C6—C71.411 (3)
N4—C131.318 (4)C7—C81.404 (3)
N4—C121.390 (3)C7—C121.433 (3)
O1—S11.4758 (17)C8—C91.373 (4)
O2—S1i1.4671 (18)C8—H80.9300
O3—S11.4873 (18)C9—C101.393 (4)
O4—S11.4689 (18)C9—H90.9300
O5—H5A0.8500C10—H100.9300
O5—H5B0.8501C11—C121.374 (3)
O6—H6A0.8499C13—H130.9300
O6—H6B0.8499
O6—Co1—O192.97 (8)N1—C1—C2122.7 (2)
O6—Co1—O287.31 (7)N1—C1—H1118.6
O1—Co1—O297.67 (7)C2—C1—H1118.6
O6—Co1—N199.04 (8)C3—C2—C1119.3 (2)
O1—Co1—N1163.56 (8)C3—C2—H2120.4
O2—Co1—N194.09 (7)C1—C2—H2120.4
O6—Co1—N285.76 (8)C2—C3—C4119.2 (2)
O1—Co1—N292.21 (7)C2—C3—H3A120.4
O2—Co1—N2168.21 (8)C4—C3—H3A120.4
N1—Co1—N277.62 (7)C3—C4—C5118.2 (2)
O6—Co1—O5172.06 (7)C3—C4—C11126.3 (2)
O1—Co1—O587.15 (7)C5—C4—C11115.5 (2)
O2—Co1—O584.80 (7)N1—C5—C4121.8 (2)
N1—Co1—O582.50 (7)N1—C5—C6116.8 (2)
N2—Co1—O5102.17 (7)C4—C5—C6121.4 (2)
C1—N1—C5118.7 (2)N2—C6—C7122.1 (2)
C1—N1—Co1126.32 (17)N2—C6—C5116.6 (2)
C5—N1—Co1114.74 (16)C7—C6—C5121.3 (2)
C10—N2—C6118.4 (2)C8—C7—C6117.8 (2)
C10—N2—Co1127.18 (16)C8—C7—C12125.9 (2)
C6—N2—Co1114.27 (16)C6—C7—C12116.3 (2)
C13—N3—C11106.2 (2)C9—C8—C7119.2 (2)
C13—N3—H3126.9C9—C8—H8120.4
C11—N3—H3126.9C7—C8—H8120.4
C13—N4—C12103.9 (2)C8—C9—C10119.6 (2)
S1—O1—Co1130.53 (10)C8—C9—H9120.2
S1i—O2—Co1138.89 (11)C10—C9—H9120.2
Co1—O5—H5A99.1N2—C10—C9122.8 (2)
Co1—O5—H5B106.7N2—C10—H10118.6
H5A—O5—H5B107.0C9—C10—H10118.6
Co1—O6—H6A116.5C12—C11—N3106.0 (2)
Co1—O6—H6B134.5C12—C11—C4123.7 (2)
H6A—O6—H6B108.9N3—C11—C4130.2 (2)
H7A—O7—H7B108.0C11—C12—N4110.0 (2)
O2i—S1—O4109.74 (11)C11—C12—C7121.7 (2)
O2i—S1—O1109.81 (11)N4—C12—C7128.4 (2)
O4—S1—O1108.62 (10)N4—C13—N3113.8 (2)
O2i—S1—O3109.99 (10)N4—C13—H13123.1
O4—S1—O3108.67 (11)N3—C13—H13123.1
O1—S1—O3109.98 (10)
O6—Co1—N1—C1100.4 (2)Co1—N1—C5—C62.7 (3)
O1—Co1—N1—C1123.2 (3)C3—C4—C5—N11.0 (4)
O2—Co1—N1—C112.5 (2)C11—C4—C5—N1178.9 (2)
N2—Co1—N1—C1176.0 (2)C3—C4—C5—C6178.7 (2)
O5—Co1—N1—C171.7 (2)C11—C4—C5—C61.5 (4)
O6—Co1—N1—C584.93 (18)C10—N2—C6—C72.5 (4)
O1—Co1—N1—C551.5 (3)Co1—N2—C6—C7178.45 (18)
O2—Co1—N1—C5172.86 (17)C10—N2—C6—C5177.7 (2)
N2—Co1—N1—C51.34 (17)Co1—N2—C6—C51.7 (3)
O5—Co1—N1—C5102.94 (18)N1—C5—C6—N23.0 (3)
O6—Co1—N2—C1075.6 (2)C4—C5—C6—N2176.7 (2)
O1—Co1—N2—C1017.2 (2)N1—C5—C6—C7177.2 (2)
O2—Co1—N2—C10129.8 (3)C4—C5—C6—C73.1 (4)
N1—Co1—N2—C10175.8 (2)N2—C6—C7—C82.2 (4)
O5—Co1—N2—C10104.8 (2)C5—C6—C7—C8178.0 (2)
O6—Co1—N2—C699.96 (17)N2—C6—C7—C12177.3 (2)
O1—Co1—N2—C6167.22 (17)C5—C6—C7—C122.5 (3)
O2—Co1—N2—C645.8 (4)C6—C7—C8—C90.0 (4)
N1—Co1—N2—C60.26 (16)C12—C7—C8—C9179.4 (3)
O5—Co1—N2—C679.66 (17)C7—C8—C9—C101.7 (4)
O6—Co1—O1—S1117.94 (15)C6—N2—C10—C90.6 (4)
O2—Co1—O1—S130.25 (15)Co1—N2—C10—C9176.0 (2)
N1—Co1—O1—S1105.0 (3)C8—C9—C10—N21.5 (4)
N2—Co1—O1—S1156.20 (15)C13—N3—C11—C120.4 (3)
O5—Co1—O1—S154.11 (15)C13—N3—C11—C4178.7 (3)
O6—Co1—O2—S1i21.15 (18)C3—C4—C11—C12179.2 (3)
O1—Co1—O2—S1i71.49 (18)C5—C4—C11—C120.7 (4)
N1—Co1—O2—S1i120.03 (18)C3—C4—C11—N30.2 (5)
N2—Co1—O2—S1i75.2 (4)C5—C4—C11—N3179.7 (2)
O5—Co1—O2—S1i157.89 (18)N3—C11—C12—N40.4 (3)
Co1—O1—S1—O2i80.84 (16)C4—C11—C12—N4178.8 (2)
Co1—O1—S1—O4159.15 (14)N3—C11—C12—C7179.6 (2)
Co1—O1—S1—O340.34 (17)C4—C11—C12—C71.2 (4)
C5—N1—C1—C21.1 (4)C13—N4—C12—C110.2 (3)
Co1—N1—C1—C2175.59 (19)C13—N4—C12—C7179.7 (3)
N1—C1—C2—C30.5 (4)C8—C7—C12—C11179.9 (2)
C1—C2—C3—C41.4 (4)C6—C7—C12—C110.4 (4)
C2—C3—C4—C50.7 (4)C8—C7—C12—N40.1 (4)
C2—C3—C4—C11179.5 (3)C6—C7—C12—N4179.5 (2)
C1—N1—C5—C41.8 (4)C12—N4—C13—N30.0 (3)
Co1—N1—C5—C4176.97 (18)C11—N3—C13—N40.3 (3)
C1—N1—C5—C6177.8 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4ii0.862.052.886 (3)165
N3—H3···S1ii0.862.943.709 (2)150
O5—H5A···O30.851.942.764 (2)165
O5—H5A···S10.852.773.4184 (19)134
O6—H6B···O7iii0.851.792.634 (3)174
O7—H7B···O3iv0.852.002.843 (3)176
O7—H7B···S1iv0.852.933.703 (3)152
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2(SO4)2(C13H8N4)2(H2O)4]·2H2O
Mr858.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3160 (13), 9.0716 (10), 16.8549 (17)
β (°) 99.104 (1)
V3)1557.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.43 × 0.36 × 0.22
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.581, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
7558, 2742, 2329
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.07
No. of reflections2742
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.36

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.124 (2)Co1—O12.0889 (17)
Co1—N22.137 (2)Co1—O22.0978 (17)
Co1—O62.0654 (19)Co1—O52.1468 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.0482.886 (3)165
N3—H3···S1i0.862.9403.709 (2)150
O5—H5A···O30.851.9352.764 (2)165
O5—H5A···S10.852.7723.4184 (19)134
O6—H6B···O7ii0.851.7862.634 (3)174
O7—H7B···O3iii0.851.9952.843 (3)176
O7—H7B···S1iii0.852.9293.703 (3)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Young Scholars Foundation of Chongqing University, the Large-scale Instrument and Equipment Open Foundation of Chongqing University, the Scientific Research Start-up Foundation of Chongqing University, the Innovative Talent Training Project of the Third Stage of the `211 project' of Chongqing University (No. S-09103) and Chongqing University Postgraduate Science and Innovation Fund.

References

First citationJing, B. W., Wu, T., Tian, C. H., Zhang, M. H. & Shen, T. (2000). Bull. Chem. Soc. Jpn, 73, 1749–1755.  Web of Science CrossRef CAS Google Scholar
First citationJing, B. W., Zhang, M. H. & Shen, T. (2004). Spectrochim. Acta Part A, 60, 2635–2641.  CrossRef Google Scholar
First citationNagababu, P. & Satyanarayana, S. (2007). Polyhedron, 26, 1686–1692.  Web of Science CrossRef CAS Google Scholar
First citationSelvi, P. T. & Palaniandavar, M. (2002). Inorg. Chim. Acta, 337, 420–428.  Web of Science CrossRef CAS Google Scholar
First citationShavaleev, N. M., Adams, H. & Weinstein, J. A. (2007). Inorg. Chim. Acta, 360, 700–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, H., Liu, J. Q., Zhang, Y. N., Wang, Y. Y., Wen, G. L., Guo, C. Y. & Shi, Q. Z. (2008). Inorg. Chem. Commun. 11, 129–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J. Z., Ye, B. H., Wang, L., Ji, L. N., Zhou, J. Y., Li, R. H. & Zhou, Z. Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395–1401.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m844-m845
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds