organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-2-phenyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 June 2009; accepted 26 June 2009; online 11 July 2009)

In the title compound, C20H13IO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the phenyl ring is almost perpendicular to this plane [83.84 (5)°]. The phenyl ring in the 2-position is rotated out of the benzofuran plane, making a dihedral angle of 40.47 (5)°. The crystal structure is stabilized by non-classical inter­molecular C—H⋯O inter­actions, and by an I⋯O halogen bond of 3.124 (1) Å [C—I⋯O = 165.84 (5)°].

Related literature

For the crystal structures of similar 5-iodo-1-benzofuran derivatives, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3745.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3851.]). For a review of halogen inter­actions, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). The Cambridge Structural Database (version 5.28; Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) has 39 compounds with C–I⋯O=S contact distances less than or equal to 3.3 Å.

[Scheme 1]

Experimental

Crystal data
  • C20H13IO2S

  • Mr = 444.26

  • Triclinic, [P \overline 1]

  • a = 9.3544 (4) Å

  • b = 9.7565 (5) Å

  • c = 10.2808 (5) Å

  • α = 113.381 (1)°

  • β = 92.640 (1)°

  • γ = 98.047 (1)°

  • V = 847.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 273 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.467, Tmax = 0.665

  • 7217 measured reflections

  • 3616 independent reflections

  • 3503 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.07

  • 3616 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.53 3.438 (2) 165
C19—H19⋯O1ii 0.93 2.59 3.483 (2) 162
C20—H20⋯O2iii 0.93 2.53 3.412 (2) 159
Symmetry codes: (i) -x, -y, -z; (ii) x, y, z+1; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 5-iodo-1-benzofuran analogues, viz. 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-2-methyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007b). We present the crystal structure of the title compound (I), 5-iodo-2-phenyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in (I) formed by the planes of the benzofuran and 2-phenyl rings is 40.47 (5)°, and the phenyl ring (C15-C20) with 83.84 (5)° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O interactions; the first between an H atom of the 2-phenyl ring and the oxygen of the SO unit, with a C10–H10···O2i, the second between a phenyl H atom of the phenylsulfinyl substituent and the furan O atom, with a C19–H19···O1ii, the third between a phenyl H atom of the phenylsulfinyl substituent and the oxygen of the SO unit, with a C20–H20···O2iii, respectively (Table 1 and Fig. 2; symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of neighbouring SO unit, with an I···Oiv (Symmetry code as in Fig. 2). The observed I···O separation of 3.124 (1) Å and the nearly linear C–I···O angle of 165.84 (5)° are typical for such halogen bonds. A search of Cambridge Structural Database (version 5.28; Allen, 2002) revealed 39 compounds with C–I···OS contact distances equal to or less than 3.3 Å.

Related literature top

For the crystal structures of similar 5-iodo-1-benzofuran derivatives, see: Choi et al. (2007a,b). For a review of halogen interactions, see: Politzer et al. (2007). The Cambridge Structural Database (version 5.28; Allen et al., 2002) has 39 compounds with C–I···OS contact distances equal to or less than 3.3 Å.

Experimental top

The 77% 3-chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of 5-iodo-2-phenyl-3-phenylsulfanyl-1-benzofuran (214 mg, 0.5 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 423-424 K; Rf = 0.74 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The C–H···O hydrogen bond and I···O halogen bond (dotted lines) in the title compound. [Symmetry code: (i) -x, -y, -z; (ii) x, y, z + 1; (iii) -x, -y, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x, y, z - 1.]
5-Iodo-2-phenyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C20H13IO2SZ = 2
Mr = 444.26F(000) = 436
Triclinic, P1Dx = 1.741 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3544 (4) ÅCell parameters from 6672 reflections
b = 9.7565 (5) Åθ = 2.2–27.5°
c = 10.2808 (5) ŵ = 2.02 mm1
α = 113.381 (1)°T = 273 K
β = 92.640 (1)°Block, colorless
γ = 98.047 (1)°0.40 × 0.40 × 0.20 mm
V = 847.42 (7) Å3
Data collection top
Bruker SMART CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube3503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.467, Tmax = 0.665l = 1312
7217 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.044H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.4472P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C20H13IO2Sγ = 98.047 (1)°
Mr = 444.26V = 847.42 (7) Å3
Triclinic, P1Z = 2
a = 9.3544 (4) ÅMo Kα radiation
b = 9.7565 (5) ŵ = 2.02 mm1
c = 10.2808 (5) ÅT = 273 K
α = 113.381 (1)°0.40 × 0.40 × 0.20 mm
β = 92.640 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3503 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.665Rint = 0.014
7217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
3616 reflectionsΔρmin = 0.66 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.041308 (11)0.682844 (11)0.391884 (12)0.02610 (5)
S0.15151 (4)0.00846 (5)0.27065 (4)0.02113 (8)
O10.23863 (13)0.11727 (14)0.05193 (12)0.0244 (2)
O20.01344 (13)0.05325 (15)0.32919 (13)0.0278 (3)
C10.19488 (18)0.09925 (19)0.15550 (17)0.0213 (3)
C20.16806 (17)0.24593 (19)0.16717 (17)0.0212 (3)
C30.12402 (18)0.37088 (19)0.27157 (18)0.0229 (3)
H30.10380.37140.35950.027*
C40.11164 (18)0.49421 (19)0.23915 (18)0.0231 (3)
C50.14158 (19)0.4962 (2)0.10730 (19)0.0263 (3)
H50.13290.58150.09010.032*
C60.1841 (2)0.3719 (2)0.00232 (19)0.0274 (4)
H60.20370.37070.08600.033*
C70.19590 (18)0.24964 (19)0.03641 (18)0.0231 (3)
C80.23701 (18)0.02755 (19)0.02314 (17)0.0222 (3)
C90.28197 (18)0.11933 (19)0.05014 (18)0.0223 (3)
C100.23677 (19)0.2044 (2)0.19558 (19)0.0265 (3)
H100.18000.16710.24630.032*
C110.2777 (2)0.3454 (2)0.2632 (2)0.0315 (4)
H110.24610.40360.35920.038*
C120.3653 (2)0.4000 (2)0.1890 (2)0.0347 (4)
H120.39290.49390.23550.042*
C130.4117 (2)0.3148 (2)0.0455 (2)0.0344 (4)
H130.47060.35150.00410.041*
C140.3700 (2)0.1747 (2)0.0242 (2)0.0286 (4)
H140.40090.11780.12060.034*
C150.29386 (18)0.10909 (19)0.41498 (17)0.0216 (3)
C160.4258 (2)0.1827 (2)0.3995 (2)0.0333 (4)
H160.44110.19140.31420.040*
C170.5347 (2)0.2429 (3)0.5131 (2)0.0412 (5)
H170.62330.29310.50410.049*
C180.5124 (2)0.2288 (2)0.6400 (2)0.0342 (4)
H180.58640.26840.71520.041*
C190.3803 (2)0.1560 (2)0.65465 (19)0.0287 (4)
H190.36550.14730.74000.034*
C200.26963 (19)0.09587 (19)0.54241 (18)0.0244 (3)
H200.18050.04740.55230.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02785 (7)0.02109 (7)0.03128 (7)0.00645 (4)0.00755 (5)0.01148 (5)
S0.02433 (19)0.02144 (19)0.02157 (18)0.00522 (15)0.00503 (15)0.01221 (15)
O10.0307 (6)0.0269 (6)0.0205 (5)0.0099 (5)0.0065 (5)0.0129 (5)
O20.0216 (6)0.0364 (7)0.0300 (6)0.0054 (5)0.0069 (5)0.0178 (6)
C10.0226 (7)0.0228 (8)0.0218 (7)0.0055 (6)0.0034 (6)0.0120 (6)
C20.0206 (7)0.0244 (8)0.0222 (7)0.0045 (6)0.0026 (6)0.0130 (6)
C30.0241 (8)0.0257 (8)0.0228 (8)0.0058 (6)0.0054 (6)0.0133 (7)
C40.0213 (8)0.0225 (8)0.0268 (8)0.0049 (6)0.0042 (6)0.0107 (7)
C50.0285 (8)0.0267 (9)0.0306 (9)0.0068 (7)0.0027 (7)0.0182 (7)
C60.0324 (9)0.0342 (9)0.0242 (8)0.0100 (7)0.0064 (7)0.0190 (7)
C70.0235 (8)0.0271 (8)0.0223 (8)0.0071 (6)0.0038 (6)0.0129 (7)
C80.0223 (7)0.0264 (8)0.0219 (8)0.0052 (6)0.0022 (6)0.0137 (7)
C90.0215 (7)0.0250 (8)0.0228 (8)0.0045 (6)0.0063 (6)0.0115 (7)
C100.0267 (8)0.0279 (9)0.0245 (8)0.0028 (7)0.0032 (7)0.0108 (7)
C110.0371 (10)0.0266 (9)0.0260 (9)0.0001 (7)0.0091 (7)0.0070 (7)
C120.0409 (11)0.0231 (9)0.0413 (11)0.0096 (8)0.0169 (9)0.0118 (8)
C130.0364 (10)0.0333 (10)0.0414 (11)0.0150 (8)0.0092 (8)0.0201 (9)
C140.0316 (9)0.0296 (9)0.0266 (8)0.0098 (7)0.0038 (7)0.0121 (7)
C150.0225 (8)0.0233 (8)0.0227 (8)0.0081 (6)0.0039 (6)0.0117 (6)
C160.0260 (9)0.0531 (12)0.0292 (9)0.0036 (8)0.0057 (7)0.0262 (9)
C170.0238 (9)0.0654 (15)0.0401 (11)0.0027 (9)0.0013 (8)0.0312 (11)
C180.0286 (9)0.0472 (11)0.0289 (9)0.0068 (8)0.0010 (7)0.0179 (8)
C190.0370 (10)0.0330 (9)0.0218 (8)0.0109 (8)0.0069 (7)0.0151 (7)
C200.0272 (8)0.0239 (8)0.0264 (8)0.0071 (6)0.0079 (7)0.0133 (7)
Geometric parameters (Å, º) top
I—C42.104 (2)C10—C111.391 (3)
I—O2i3.124 (1)C10—H100.9300
S—O21.497 (1)C11—C121.387 (3)
S—C11.768 (2)C11—H110.9300
S—C151.799 (2)C12—C131.386 (3)
O1—C81.377 (2)C12—H120.9300
O1—C71.378 (2)C13—C141.389 (3)
C1—C81.367 (2)C13—H130.9300
C1—C21.447 (2)C14—H140.9300
C2—C71.394 (2)C15—C161.388 (2)
C2—C31.397 (2)C15—C201.392 (2)
C3—C41.388 (2)C16—C171.387 (3)
C3—H30.9300C16—H160.9300
C4—C51.404 (2)C17—C181.386 (3)
C5—C61.389 (3)C17—H170.9300
C5—H50.9300C18—C191.382 (3)
C6—C71.387 (2)C18—H180.9300
C6—H60.9300C19—C201.389 (3)
C8—C91.463 (2)C19—H190.9300
C9—C141.397 (2)C20—H200.9300
C9—C101.401 (2)
C4—I—O2i165.84 (5)C11—C10—H10120.4
O2—S—C1107.63 (7)C9—C10—H10120.4
O2—S—C15106.00 (8)C12—C11—C10120.66 (17)
C1—S—C15100.57 (8)C12—C11—H11119.7
C8—O1—C7106.38 (12)C10—C11—H11119.7
C8—C1—C2107.02 (14)C13—C12—C11120.13 (17)
C8—C1—S123.64 (13)C13—C12—H12119.9
C2—C1—S128.38 (12)C11—C12—H12119.9
C7—C2—C3119.26 (15)C12—C13—C14119.94 (18)
C7—C2—C1104.91 (14)C12—C13—H13120.0
C3—C2—C1135.83 (15)C14—C13—H13120.0
C4—C3—C2117.47 (15)C13—C14—C9120.11 (17)
C4—C3—H3121.3C13—C14—H14119.9
C2—C3—H3121.3C9—C14—H14119.9
C3—C4—C5122.37 (16)C16—C15—C20120.95 (16)
C3—C4—I118.65 (12)C16—C15—S123.40 (13)
C5—C4—I118.96 (12)C20—C15—S115.34 (13)
C6—C5—C4120.55 (15)C17—C16—C15119.05 (17)
C6—C5—H5119.7C17—C16—H16120.5
C4—C5—H5119.7C15—C16—H16120.5
C7—C6—C5116.34 (16)C18—C17—C16120.50 (18)
C7—C6—H6121.8C18—C17—H17119.8
C5—C6—H6121.8C16—C17—H17119.8
O1—C7—C6125.17 (15)C19—C18—C17120.03 (18)
O1—C7—C2110.82 (14)C19—C18—H18120.0
C6—C7—C2124.00 (16)C17—C18—H18120.0
C1—C8—O1110.87 (14)C18—C19—C20120.30 (16)
C1—C8—C9133.30 (15)C18—C19—H19119.8
O1—C8—C9115.81 (14)C20—C19—H19119.8
C14—C9—C10119.94 (16)C19—C20—C15119.15 (16)
C14—C9—C8120.26 (15)C19—C20—H20120.4
C10—C9—C8119.80 (15)C15—C20—H20120.4
C11—C10—C9119.19 (17)
O2—S—C1—C8134.10 (15)C7—O1—C8—C10.06 (18)
C15—S—C1—C8115.21 (15)C7—O1—C8—C9178.86 (14)
O2—S—C1—C233.18 (17)C1—C8—C9—C1439.3 (3)
C15—S—C1—C277.52 (16)O1—C8—C9—C14139.16 (16)
C8—C1—C2—C70.54 (18)C1—C8—C9—C10140.9 (2)
S—C1—C2—C7168.40 (13)O1—C8—C9—C1040.7 (2)
C8—C1—C2—C3179.78 (19)C14—C9—C10—C111.5 (3)
S—C1—C2—C311.3 (3)C8—C9—C10—C11178.63 (16)
C7—C2—C3—C40.6 (2)C9—C10—C11—C121.6 (3)
C1—C2—C3—C4179.73 (18)C10—C11—C12—C130.7 (3)
C2—C3—C4—C50.0 (2)C11—C12—C13—C140.2 (3)
C2—C3—C4—I178.71 (12)C12—C13—C14—C90.2 (3)
C3—C4—C5—C60.6 (3)C10—C9—C14—C130.7 (3)
I—C4—C5—C6178.10 (13)C8—C9—C14—C13179.52 (17)
C4—C5—C6—C70.5 (3)O2—S—C15—C16135.76 (16)
C8—O1—C7—C6179.37 (17)C1—S—C15—C1623.80 (17)
C8—O1—C7—C20.42 (18)O2—S—C15—C2050.62 (14)
C5—C6—C7—O1178.91 (16)C1—S—C15—C20162.58 (13)
C5—C6—C7—C20.1 (3)C20—C15—C16—C170.3 (3)
C3—C2—C7—O1179.66 (14)S—C15—C16—C17172.99 (17)
C1—C2—C7—O10.59 (18)C15—C16—C17—C180.5 (3)
C3—C2—C7—C60.7 (3)C16—C17—C18—C190.8 (4)
C1—C2—C7—C6179.56 (16)C17—C18—C19—C200.4 (3)
C2—C1—C8—O10.30 (19)C18—C19—C20—C150.4 (3)
S—C1—C8—O1169.29 (11)C16—C15—C20—C190.7 (3)
C2—C1—C8—C9178.21 (17)S—C15—C20—C19173.06 (13)
S—C1—C8—C912.2 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2ii0.932.533.438 (2)165
C19—H19···O1iii0.932.593.483 (2)162
C20—H20···O2iv0.932.533.412 (2)159
Symmetry codes: (ii) x, y, z; (iii) x, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H13IO2S
Mr444.26
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.3544 (4), 9.7565 (5), 10.2808 (5)
α, β, γ (°)113.381 (1), 92.640 (1), 98.047 (1)
V3)847.42 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.467, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
7217, 3616, 3503
Rint0.014
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.07
No. of reflections3616
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.66

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.533.438 (2)164.8
C19—H19···O1ii0.932.593.483 (2)161.6
C20—H20···O2iii0.932.533.412 (2)158.6
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds