organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

p-Tolyl bis­­(p-tolyl­amido)phosphate

aDepartment of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, Imam Hossein University, PO Box 16575-347, Tehran, Iran
*Correspondence e-mail: ghadimi_saied@yahoo.com

(Received 25 June 2009; accepted 17 July 2009; online 25 July 2009)

In the title compound, C21H23N2O2P, the P atom exhibits tetra­hedral coordination; the P—N bond lengths are relatively short [1.6297 (13) and 1.6424 (13) Å]. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into a zigzag chain running along the c axis.

Related literature

For related compounds, see: Pourayoubi & Sabbaghi (2007[Pourayoubi, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4366.]); Ghadimi et al. (2007[Ghadimi, S., Valmoozi, A. A. E. & Pourayoubi, M. (2007). Acta Cryst. E63, o3260.]); Gholivand et al. (2001[Gholivand, K., Tadjarodi, A., Taeb, A., Garivani, G. & Ng, S. W. (2001). Acta Cryst. E57, o472-o473.]). For bond-length data, see: Corbridge (1995[Corbridge, D. E. C. (1995). Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 5th ed., p. 1179. New York: Elsevier Science.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N2O2P

  • Mr = 366.38

  • Monoclinic, P 21 /c

  • a = 14.0977 (6) Å

  • b = 14.7657 (6) Å

  • c = 9.5155 (4) Å

  • β = 104.676 (1)°

  • V = 1916.14 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.40 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.969

  • 18737 measured reflections

  • 5555 independent reflections

  • 4484 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.02

  • 5555 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.878 (9) 1.928 (7) 2.805 (2) 176 (2)
N2—H2N⋯O2ii 0.881 (9) 2.209 (7) 3.068 (2) 165 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the previous works about phosphoramidates and phosphoric acid esters, some derivatives have been structurally discussed such as [(CH3)2N][4-H3C—C6H4—O]P(O)CN (Ghadimi et al., 2007), [(CH3)2N]P(O)[O—C6H4-(4-NO2)]2 (Gholivand et al., 2001) and [(C6H5CH2)(CH(CH3)2)NH2][CCl3C(O)NHP(O)(O)(OCH3)] (Pourayoubi & Sabbaghi, 2007). Here, synthesis and crystal structure of a new phosphoramido acid ester, [4-H3C—C6H4O]P(O)[NHC6H4-4-CH3]2, are reported. The title compound was synthesized from the reaction of (4-tolyl)-dichlorophosphate with an excess amount of para-toluidine (1:4 mole ratios). Single crystals were obtained from CHCl3/CH3CN at room temperature. Molecular structure of [4-H3C—C6H4O]P(O)[NHC6H4-4-CH3]2 is shown in Fig. 1. The phosphorus atom has distorted tetrahedral configuration. The bond angles around P atom are in the range of 96.93 (6)° [for the O(2)—P(1)—N(1) angle] to 119.08 (7)° [for the O(1)—P(1)—N(1) angle]. The oxygen atom of OC6H4-4-CH3 moiety has sp2 character (the C(15)—O(2)—P(1) angle is 119.58 (9)°, also the P(1)—O(2) bond length of 1.6072 (11) Å is smaller than the P—O single bond length. The P(1)—O(1) bond length (1.4765 (11) Å) is longer than the normal P===O bond length [1.45 Å for P(O)Cl3, (Corbridge, 1995)]. The P—N bond lengths in title compound are shorter than the P—N single bond length [1.77 Å for NaHPO3NH2, (Corbridge, 1995)]. Moreover, the nitrogen atoms have sp2 hybridization. Sum of the surrounding angles around N(1) and N(2) atoms are 359.7° & 360.0°, respectively. H-bonded chain of title compound is formed via two different types of N—H···O===P hydrogen bond. A view of unit cell packing showing the N—H···O===P hydrogen bond is given in Fig. 2.

Related literature top

For related compounds, see: Pourayoubi & Sabbaghi (2007); Ghadimi et al. (2007); Gholivand et al. (2001). For bond-length data, see: Corbridge (1995).

Experimental top

To a solution of (4-tolyl)-dichlorophosphate (2.250 g, 10 mmol) in 15 ml dry acetonitrile, a solution of para-toluidine (4.286 g, 40 mmol) in 30 ml acetonitrile was added at 0°C. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals of the product were obtained from a solution of chloroform-acetonitrile (4:1) after a slow evaporation at room temperature. 1H NMR (250.13 MHz, CDCl3, 25°C, TMS), δ (p.p.m.): 2.17 (s, 6H, p-CH3), 2.25 (s, 3H, p-CH3), 6.95–7.00 (m, 8H, Ar—H), 7.03–7.15 (m, 4H, Ar—H), 8.15 (d, 2J(PNH) = 9.8 Hz, 2H, NH); 13C NMR (62.90 MHz, CDCl3, 25°C, TMS), δ (p.p.m.): 20.69 (s, 2 C, p-CH3), 2.77 (s, 1 C, p-CH3), 117.98 (d, 3J(P,C) = 7.6 Hz, Cortho), 120.77 (d, 3J(P,C) = 4.6 Hz, Cortho), 129.81 (s), 129.96 (s), 130.47 (s), 134.24 (s), 138.70 (d, 2J(P,C) = 1.8 Hz, 2 C, Cipso), 148.59 (d, 2J(P,C) = 6.5 Hz, 1 C, Cipso); 31P{1H} NMR (101.25 MHz, CDCl3, 25°C, H3PO4 external), δ (p.p.m.): 1.23 (s); 31P NMR, δ (p.p.m.): 1.23 (t, 2J(HNP) = 9.8 Hz). IR (KBr, cm-1): 3220 (NH), 2950, 2935, 1610, 1515, 1430, 1320, 1240 (P===O), 1190, 1150, 1125, 975, 915, 725.

Refinement top

The hydrogen atoms of NH groups were found in difference Fourier synthesis and refined in isotropic approximation with a distance restraint (DFIX 0.88 0.01). The H(C) atom positions were calculated. H atoms were refined in isotropic approximatiom in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ni), 1.2 Ueq(Ci) or 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of nitrogen and carbon atoms of CH and CH3 groups to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-labeling scheme for [4-H3C—C6H4O]P(O)[NHC6H4-4-CH3]2 (50% probability ellipsoids).
[Figure 2] Fig. 2. A view of unit cell packing of title compound.
p-Tolyl bis(p-tolylamido)phosphate top
Crystal data top
C21H23N2O2PF(000) = 776
Mr = 366.38Dx = 1.270 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 552 reflections
a = 14.0977 (6) Åθ = 3–30°
b = 14.7657 (6) ŵ = 0.16 mm1
c = 9.5155 (4) ÅT = 100 K
β = 104.676 (1)°Needle, colorless
V = 1916.14 (14) Å30.40 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5555 independent reflections
Radiation source: fine-focus sealed tube4484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.939, Tmax = 0.969k = 2016
18737 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.982P]
where P = (Fo2 + 2Fc2)/3
5555 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.62 e Å3
2 restraintsΔρmin = 0.50 e Å3
Crystal data top
C21H23N2O2PV = 1916.14 (14) Å3
Mr = 366.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0977 (6) ŵ = 0.16 mm1
b = 14.7657 (6) ÅT = 100 K
c = 9.5155 (4) Å0.40 × 0.26 × 0.20 mm
β = 104.676 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4484 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.969Rint = 0.033
18737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.62 e Å3
5555 reflectionsΔρmin = 0.50 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.30676 (3)0.73955 (3)0.60541 (4)0.01332 (9)
O10.37549 (8)0.77353 (7)0.52354 (11)0.0174 (2)
O20.27068 (8)0.81531 (7)0.70157 (11)0.0165 (2)
N10.34582 (9)0.66666 (8)0.73586 (13)0.0154 (2)
H1N0.3574 (14)0.6865 (13)0.8256 (12)0.020 (5)*
N20.20970 (9)0.69923 (9)0.48821 (13)0.0164 (2)
H2N0.2157 (13)0.6978 (12)0.3983 (11)0.014 (4)*
C10.37149 (10)0.57578 (10)0.71581 (15)0.0153 (3)
C20.38112 (14)0.51526 (11)0.83062 (17)0.0249 (3)
H2A0.37250.53530.91920.030*
C30.40352 (14)0.42486 (12)0.81343 (19)0.0269 (4)
H3A0.41040.38530.89140.032*
C40.41580 (11)0.39238 (11)0.68168 (18)0.0198 (3)
C50.40809 (11)0.45397 (11)0.56929 (17)0.0189 (3)
H5A0.41700.43390.48090.023*
C60.38729 (11)0.54520 (10)0.58541 (16)0.0173 (3)
H6A0.38400.58540.50910.021*
C70.43533 (13)0.29353 (12)0.6595 (2)0.0277 (4)
H7A0.44150.28450.56230.042*
H7B0.38190.25780.67450.042*
H7C0.49500.27550.72760.042*
C80.11965 (11)0.66800 (10)0.51075 (16)0.0163 (3)
C90.04290 (12)0.64951 (11)0.38934 (16)0.0209 (3)
H9A0.05170.65820.29670.025*
C100.04647 (12)0.61819 (12)0.40582 (18)0.0227 (3)
H10A0.09640.60520.32370.027*
C110.06289 (11)0.60580 (11)0.54274 (18)0.0201 (3)
C120.01388 (12)0.62506 (12)0.66285 (17)0.0222 (3)
H12A0.00440.61770.75540.027*
C130.10467 (12)0.65499 (11)0.64861 (16)0.0206 (3)
H13A0.15520.66630.73090.025*
C140.16075 (12)0.57270 (13)0.5597 (2)0.0273 (4)
H14A0.15870.56830.66100.041*
H14B0.17460.51420.51510.041*
H14C0.21120.61460.51360.041*
C150.24805 (11)0.90316 (10)0.64444 (15)0.0160 (3)
C160.31733 (11)0.97067 (10)0.68618 (16)0.0173 (3)
H16A0.37930.95760.74500.021*
C170.29238 (12)1.05864 (11)0.63823 (17)0.0206 (3)
H17A0.33811.10480.66670.025*
C180.20005 (12)1.07898 (11)0.54811 (17)0.0227 (3)
C190.13342 (12)1.00877 (12)0.50624 (18)0.0249 (3)
H19A0.07221.02100.44460.030*
C200.15618 (12)0.92020 (11)0.55447 (17)0.0215 (3)
H20A0.11070.87380.52680.026*
C210.17365 (16)1.17477 (13)0.4986 (2)0.0355 (4)
H21A0.10791.17620.43800.053*
H21B0.21821.19620.44460.053*
H21C0.17811.21290.58180.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01640 (17)0.01403 (17)0.00997 (15)0.00111 (13)0.00415 (12)0.00019 (13)
O10.0192 (5)0.0202 (5)0.0135 (5)0.0029 (4)0.0054 (4)0.0016 (4)
O20.0236 (5)0.0143 (5)0.0129 (4)0.0008 (4)0.0068 (4)0.0008 (4)
N10.0225 (6)0.0140 (6)0.0100 (5)0.0003 (5)0.0046 (4)0.0003 (4)
N20.0165 (6)0.0222 (6)0.0108 (5)0.0028 (5)0.0041 (4)0.0006 (5)
C10.0152 (6)0.0152 (7)0.0154 (6)0.0011 (5)0.0034 (5)0.0001 (5)
C20.0386 (9)0.0204 (8)0.0178 (7)0.0034 (7)0.0111 (6)0.0029 (6)
C30.0383 (9)0.0196 (8)0.0239 (8)0.0049 (7)0.0102 (7)0.0074 (6)
C40.0139 (6)0.0170 (7)0.0272 (8)0.0010 (5)0.0026 (6)0.0011 (6)
C50.0166 (7)0.0203 (7)0.0203 (7)0.0004 (6)0.0054 (5)0.0043 (6)
C60.0196 (7)0.0174 (7)0.0157 (6)0.0011 (6)0.0061 (5)0.0005 (5)
C70.0245 (8)0.0183 (8)0.0375 (9)0.0046 (6)0.0025 (7)0.0010 (7)
C80.0170 (7)0.0156 (7)0.0166 (6)0.0004 (5)0.0049 (5)0.0004 (5)
C90.0220 (7)0.0248 (8)0.0152 (6)0.0006 (6)0.0033 (6)0.0003 (6)
C100.0181 (7)0.0253 (8)0.0224 (7)0.0016 (6)0.0010 (6)0.0010 (6)
C110.0178 (7)0.0162 (7)0.0269 (8)0.0005 (6)0.0068 (6)0.0012 (6)
C120.0234 (7)0.0255 (8)0.0202 (7)0.0026 (6)0.0100 (6)0.0015 (6)
C130.0201 (7)0.0259 (8)0.0158 (6)0.0056 (6)0.0044 (5)0.0013 (6)
C140.0192 (7)0.0265 (9)0.0369 (9)0.0019 (6)0.0084 (7)0.0020 (7)
C150.0213 (7)0.0145 (7)0.0131 (6)0.0012 (5)0.0063 (5)0.0005 (5)
C160.0187 (7)0.0181 (7)0.0151 (6)0.0017 (6)0.0039 (5)0.0000 (5)
C170.0248 (8)0.0163 (7)0.0200 (7)0.0015 (6)0.0045 (6)0.0008 (6)
C180.0270 (8)0.0186 (7)0.0212 (7)0.0046 (6)0.0035 (6)0.0016 (6)
C190.0218 (7)0.0249 (8)0.0244 (8)0.0044 (6)0.0008 (6)0.0032 (6)
C200.0206 (7)0.0212 (8)0.0209 (7)0.0025 (6)0.0019 (6)0.0004 (6)
C210.0402 (11)0.0207 (9)0.0380 (10)0.0062 (8)0.0041 (8)0.0041 (7)
Geometric parameters (Å, º) top
P1—O11.4765 (11)C9—H9A0.9300
P1—O21.6072 (11)C10—C111.392 (2)
P1—N11.6297 (13)C10—H10A0.9300
P1—N21.6424 (13)C11—C121.390 (2)
O2—C151.4114 (17)C11—C141.510 (2)
N1—C11.4153 (19)C12—C131.393 (2)
N1—H1N0.878 (9)C12—H12A0.9300
N2—C81.4171 (19)C13—H13A0.9300
N2—H2N0.881 (9)C14—H14A0.9600
C1—C61.390 (2)C14—H14B0.9600
C1—C21.391 (2)C14—H14C0.9600
C2—C31.391 (2)C15—C161.382 (2)
C2—H2A0.9300C15—C201.383 (2)
C3—C41.393 (2)C16—C171.392 (2)
C3—H3A0.9300C16—H16A0.9300
C4—C51.387 (2)C17—C181.398 (2)
C4—C71.510 (2)C17—H17A0.9300
C5—C61.395 (2)C18—C191.388 (2)
C5—H5A0.9300C18—C211.507 (2)
C6—H6A0.9300C19—C201.396 (2)
C7—H7A0.9600C19—H19A0.9300
C7—H7B0.9600C20—H20A0.9300
C7—H7C0.9600C21—H21A0.9600
C8—C131.394 (2)C21—H21B0.9600
C8—C91.395 (2)C21—H21C0.9600
C9—C101.388 (2)
O1—P1—O2114.12 (6)C9—C10—C11121.37 (15)
O1—P1—N1119.08 (7)C9—C10—H10A119.3
O2—P1—N196.93 (6)C11—C10—H10A119.3
O1—P1—N2108.07 (6)C12—C11—C10117.60 (14)
O2—P1—N2108.03 (6)C12—C11—C14121.38 (15)
N1—P1—N2109.90 (7)C10—C11—C14121.02 (15)
C15—O2—P1119.58 (9)C11—C12—C13121.89 (14)
C1—N1—P1124.90 (10)C11—C12—H12A119.1
C1—N1—H1N117.2 (13)C13—C12—H12A119.1
P1—N1—H1N117.6 (13)C12—C13—C8119.83 (14)
C8—N2—P1129.74 (10)C12—C13—H13A120.1
C8—N2—H2N116.7 (12)C8—C13—H13A120.1
P1—N2—H2N113.6 (12)C11—C14—H14A109.5
C6—C1—C2119.10 (14)C11—C14—H14B109.5
C6—C1—N1122.17 (13)H14A—C14—H14B109.5
C2—C1—N1118.73 (13)C11—C14—H14C109.5
C3—C2—C1120.27 (15)H14A—C14—H14C109.5
C3—C2—H2A119.9H14B—C14—H14C109.5
C1—C2—H2A119.9C16—C15—C20121.99 (14)
C2—C3—C4121.32 (15)C16—C15—O2118.56 (13)
C2—C3—H3A119.3C20—C15—O2119.37 (13)
C4—C3—H3A119.3C15—C16—C17118.52 (14)
C5—C4—C3117.69 (15)C15—C16—H16A120.7
C5—C4—C7120.50 (15)C17—C16—H16A120.7
C3—C4—C7121.80 (15)C16—C17—C18121.35 (15)
C4—C5—C6121.72 (14)C16—C17—H17A119.3
C4—C5—H5A119.1C18—C17—H17A119.3
C6—C5—H5A119.1C19—C18—C17118.22 (15)
C1—C6—C5119.82 (14)C19—C18—C21121.04 (15)
C1—C6—H6A120.1C17—C18—C21120.74 (16)
C5—C6—H6A120.1C18—C19—C20121.53 (15)
C4—C7—H7A109.5C18—C19—H19A119.2
C4—C7—H7B109.5C20—C19—H19A119.2
H7A—C7—H7B109.5C15—C20—C19118.37 (15)
C4—C7—H7C109.5C15—C20—H20A120.8
H7A—C7—H7C109.5C19—C20—H20A120.8
H7B—C7—H7C109.5C18—C21—H21A109.5
C13—C8—C9118.80 (14)C18—C21—H21B109.5
C13—C8—N2122.85 (13)H21A—C21—H21B109.5
C9—C8—N2118.35 (13)C18—C21—H21C109.5
C10—C9—C8120.49 (14)H21A—C21—H21C109.5
C10—C9—H9A119.8H21B—C21—H21C109.5
C8—C9—H9A119.8
O1—P1—O2—C1540.60 (12)C13—C8—C9—C100.4 (2)
N1—P1—O2—C15166.81 (11)N2—C8—C9—C10179.56 (15)
N2—P1—O2—C1579.60 (11)C8—C9—C10—C111.1 (3)
O1—P1—N1—C169.46 (14)C9—C10—C11—C120.6 (2)
O2—P1—N1—C1167.95 (12)C9—C10—C11—C14179.31 (16)
N2—P1—N1—C155.89 (14)C10—C11—C12—C130.5 (2)
O1—P1—N2—C8172.64 (13)C14—C11—C12—C13179.52 (16)
O2—P1—N2—C848.71 (15)C11—C12—C13—C81.2 (3)
N1—P1—N2—C855.93 (15)C9—C8—C13—C120.7 (2)
P1—N1—C1—C615.1 (2)N2—C8—C13—C12179.30 (15)
P1—N1—C1—C2164.86 (13)P1—O2—C15—C1699.59 (14)
C6—C1—C2—C31.8 (3)P1—O2—C15—C2083.48 (16)
N1—C1—C2—C3178.16 (16)C20—C15—C16—C171.4 (2)
C1—C2—C3—C40.7 (3)O2—C15—C16—C17175.40 (13)
C2—C3—C4—C52.1 (3)C15—C16—C17—C180.9 (2)
C2—C3—C4—C7177.02 (17)C16—C17—C18—C190.5 (2)
C3—C4—C5—C61.0 (2)C16—C17—C18—C21179.21 (16)
C7—C4—C5—C6178.12 (15)C17—C18—C19—C201.4 (3)
C2—C1—C6—C52.9 (2)C21—C18—C19—C20178.31 (17)
N1—C1—C6—C5177.10 (14)C16—C15—C20—C190.6 (2)
C4—C5—C6—C11.5 (2)O2—C15—C20—C19176.23 (14)
P1—N2—C8—C139.5 (2)C18—C19—C20—C150.9 (3)
P1—N2—C8—C9170.57 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (1)1.93 (1)2.805 (2)176 (2)
N2—H2N···O2ii0.88 (1)2.21 (1)3.068 (2)165 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H23N2O2P
Mr366.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.0977 (6), 14.7657 (6), 9.5155 (4)
β (°) 104.676 (1)
V3)1916.14 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
18737, 5555, 4484
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.02
No. of reflections5555
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.878 (9)1.928 (7)2.805 (2)176 (2)
N2—H2N···O2ii0.881 (9)2.209 (7)3.068 (2)165 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Support of this investigation by the Imam Hossein University is gratefully acknowledged.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorbridge, D. E. C. (1995). Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 5th ed., p. 1179. New York: Elsevier Science.  Google Scholar
First citationGhadimi, S., Valmoozi, A. A. E. & Pourayoubi, M. (2007). Acta Cryst. E63, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGholivand, K., Tadjarodi, A., Taeb, A., Garivani, G. & Ng, S. W. (2001). Acta Cryst. E57, o472–o473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds