organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-phenyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 14 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, C20H13ClO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the S-bound phenyl ring is nearly perpendicular to this plane [80.87 (5)°]. The phenyl ring in the 2-position is rotated out of the benzofuran plane, making a dihedral angle of 17.43 (7)°. The crystal structure features ππ inter­actions between the phenyl ring and the furyl ring of a neighbouring benzofuran system [centroid–centroid distance = 3.886 (2) Å].

Related literature

For the crystal structures of similar 2-phenyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1767.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1809.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13ClO2S

  • Mr = 352.81

  • Triclinic, [P \overline 1]

  • a = 8.2726 (5) Å

  • b = 9.4111 (5) Å

  • c = 11.3811 (6) Å

  • α = 73.360 (1)°

  • β = 81.630 (1)°

  • γ = 70.757 (1)°

  • V = 800.25 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 273 K

  • 0.24 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.963

  • 6930 measured reflections

  • 3428 independent reflections

  • 2843 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.06

  • 3428 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing the benzofuran skeleton have attracted considerable interest in view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999) and are well known as natural products (Akgul & Anil, 2003; von Reuss & König, 2004). This work is related to our communications on the synthesis and structures of 2-phenyl-3-phenylsulfiny-1-benzofuran analogues, viz. 5-chloro-7-methyl-2-phenyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2009a) and 5-iodo-2-phenyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2009b). Here we report the crystal structure of the title compound (I), 5-chloro-2-phenyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in (I) formed by the plane of the benzofuran ring and the plane of 2-phenyl ring is 17.43 (7)°, and the phenyl ring (C15-C20) with80.87 (5) ° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene ring and the furan ring from the neighbouring bennzofuran systems. The Cg1···Cg2i distance is 3.886 (2) Å (Cg1 and Cg2 are the centroides of the C2-C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively).

Related literature top

For the crystal structures of similar 2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); von Reuss & König (2004).

Experimental top

The 77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 5-chloro-2-phenyl-3-phenylsulfanyl-1-benzofuran (226 mg, 0.7 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 421-422 K; Rf = 0.55 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The ππ interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) - x + 1, - y + 1, -z.]
5-Chloro-2-phenyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C20H13ClO2SZ = 2
Mr = 352.81F(000) = 364
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2726 (5) ÅCell parameters from 4091 reflections
b = 9.4111 (5) Åθ = 2.4–27.4°
c = 11.3811 (6) ŵ = 0.38 mm1
α = 73.360 (1)°T = 273 K
β = 81.630 (1)°Block, colorless
γ = 70.757 (1)°0.24 × 0.15 × 0.10 mm
V = 800.25 (8) Å3
Data collection top
Bruker SMART CCD
diffractometer
3428 independent reflections
Radiation source: fine-focus sealed tube2843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1111
Tmin = 0.915, Tmax = 0.963l = 1414
6930 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2959P]
where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H13ClO2Sγ = 70.757 (1)°
Mr = 352.81V = 800.25 (8) Å3
Triclinic, P1Z = 2
a = 8.2726 (5) ÅMo Kα radiation
b = 9.4111 (5) ŵ = 0.38 mm1
c = 11.3811 (6) ÅT = 273 K
α = 73.360 (1)°0.24 × 0.15 × 0.10 mm
β = 81.630 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3428 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2843 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.963Rint = 0.016
6930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3428 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.60764 (5)0.10727 (5)0.36530 (4)0.03141 (12)
Cl1.01634 (7)0.23915 (6)0.11687 (4)0.04741 (15)
O10.50587 (16)0.56115 (13)0.20476 (11)0.0353 (3)
O20.78018 (15)0.00894 (15)0.33104 (13)0.0442 (3)
C10.5863 (2)0.29999 (19)0.27413 (15)0.0299 (4)
C20.6787 (2)0.33818 (19)0.15726 (15)0.0308 (4)
C30.7989 (2)0.2542 (2)0.08331 (16)0.0336 (4)
H30.83570.14600.10470.040*
C40.8610 (2)0.3395 (2)0.02336 (17)0.0368 (4)
C50.8064 (3)0.5023 (2)0.05899 (17)0.0415 (4)
H50.85170.55450.13170.050*
C60.6860 (3)0.5857 (2)0.01297 (17)0.0401 (4)
H60.64760.69390.00940.048*
C70.6246 (2)0.5006 (2)0.12049 (16)0.0331 (4)
C80.4853 (2)0.4365 (2)0.29930 (15)0.0314 (4)
C90.3623 (2)0.4786 (2)0.39888 (16)0.0325 (4)
C100.3580 (3)0.3731 (2)0.51308 (17)0.0391 (4)
H100.43470.27300.52700.047*
C110.2402 (3)0.4167 (2)0.60561 (18)0.0435 (5)
H110.23820.34550.68140.052*
C120.1258 (3)0.5644 (3)0.58682 (19)0.0465 (5)
H120.04670.59270.64940.056*
C130.1293 (3)0.6706 (3)0.4743 (2)0.0515 (5)
H130.05270.77070.46120.062*
C140.2462 (2)0.6280 (2)0.38153 (19)0.0445 (5)
H140.24770.70010.30620.053*
C150.4533 (2)0.07047 (18)0.29161 (15)0.0286 (3)
C160.5052 (2)0.0090 (2)0.20082 (17)0.0384 (4)
H160.62050.04220.17560.046*
C170.3826 (3)0.0381 (2)0.14814 (19)0.0467 (5)
H170.41560.09060.08650.056*
C180.2127 (3)0.0101 (2)0.1865 (2)0.0482 (5)
H180.13130.00900.14980.058*
C190.1615 (2)0.0868 (2)0.2791 (2)0.0444 (5)
H190.04640.11770.30530.053*
C200.2819 (2)0.1173 (2)0.33250 (17)0.0352 (4)
H200.24880.16840.39500.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0263 (2)0.0282 (2)0.0325 (2)0.00846 (16)0.00388 (16)0.00459 (16)
Cl0.0486 (3)0.0557 (3)0.0388 (3)0.0223 (2)0.0101 (2)0.0119 (2)
O10.0398 (7)0.0282 (6)0.0336 (7)0.0129 (5)0.0012 (5)0.0010 (5)
O20.0248 (6)0.0357 (7)0.0569 (9)0.0031 (5)0.0028 (6)0.0047 (6)
C10.0275 (8)0.0290 (8)0.0309 (9)0.0122 (7)0.0048 (7)0.0017 (7)
C20.0285 (8)0.0323 (9)0.0303 (8)0.0141 (7)0.0056 (7)0.0017 (7)
C30.0313 (9)0.0341 (9)0.0338 (9)0.0136 (7)0.0027 (7)0.0014 (7)
C40.0339 (9)0.0427 (10)0.0338 (9)0.0160 (8)0.0011 (7)0.0051 (8)
C50.0477 (11)0.0449 (11)0.0312 (9)0.0245 (9)0.0013 (8)0.0017 (8)
C60.0480 (11)0.0323 (9)0.0368 (10)0.0185 (8)0.0035 (8)0.0041 (8)
C70.0335 (9)0.0327 (9)0.0311 (9)0.0136 (7)0.0034 (7)0.0001 (7)
C80.0316 (9)0.0312 (9)0.0303 (9)0.0150 (7)0.0063 (7)0.0026 (7)
C90.0312 (9)0.0331 (9)0.0339 (9)0.0138 (7)0.0043 (7)0.0039 (7)
C100.0450 (10)0.0333 (9)0.0360 (10)0.0122 (8)0.0019 (8)0.0039 (8)
C110.0494 (11)0.0456 (11)0.0334 (10)0.0181 (9)0.0022 (8)0.0047 (8)
C120.0405 (11)0.0521 (12)0.0458 (11)0.0154 (9)0.0082 (9)0.0147 (9)
C130.0420 (11)0.0415 (11)0.0579 (13)0.0026 (9)0.0036 (10)0.0075 (10)
C140.0393 (10)0.0386 (10)0.0432 (11)0.0077 (8)0.0002 (8)0.0024 (8)
C150.0277 (8)0.0218 (8)0.0300 (8)0.0077 (6)0.0005 (6)0.0025 (6)
C160.0398 (10)0.0278 (9)0.0408 (10)0.0072 (7)0.0059 (8)0.0060 (7)
C170.0639 (14)0.0327 (10)0.0452 (11)0.0148 (9)0.0050 (10)0.0115 (8)
C180.0533 (12)0.0337 (10)0.0619 (13)0.0165 (9)0.0204 (10)0.0063 (9)
C190.0290 (9)0.0413 (11)0.0610 (13)0.0122 (8)0.0040 (9)0.0075 (9)
C200.0297 (9)0.0335 (9)0.0398 (10)0.0094 (7)0.0006 (7)0.0069 (8)
Geometric parameters (Å, º) top
S—O21.4898 (13)C10—C111.383 (3)
S—C11.7782 (16)C10—H100.9300
S—C151.7953 (17)C11—C121.376 (3)
Cl—C41.7471 (19)C11—H110.9300
O1—C71.371 (2)C12—C131.384 (3)
O1—C81.3850 (19)C12—H120.9300
C1—C81.365 (2)C13—C141.378 (3)
C1—C21.447 (2)C13—H130.9300
C2—C31.393 (2)C14—H140.9300
C2—C71.396 (2)C15—C161.383 (3)
C3—C41.384 (2)C15—C201.391 (2)
C3—H30.9300C16—C171.385 (3)
C4—C51.400 (3)C16—H160.9300
C5—C61.376 (3)C17—C181.374 (3)
C5—H50.9300C17—H170.9300
C6—C71.386 (2)C18—C191.384 (3)
C6—H60.9300C18—H180.9300
C8—C91.460 (2)C19—C201.382 (3)
C9—C141.395 (3)C19—H190.9300
C9—C101.395 (2)C20—H200.9300
O2—S—C1106.48 (8)C11—C10—H10119.8
O2—S—C15107.16 (8)C9—C10—H10119.8
C1—S—C1597.09 (7)C12—C11—C10120.71 (18)
C7—O1—C8106.97 (13)C12—C11—H11119.6
C8—C1—C2107.66 (14)C10—C11—H11119.6
C8—C1—S127.92 (13)C11—C12—C13119.62 (19)
C2—C1—S124.42 (13)C11—C12—H12120.2
C3—C2—C7119.65 (15)C13—C12—H12120.2
C3—C2—C1135.69 (16)C14—C13—C12120.05 (19)
C7—C2—C1104.66 (15)C14—C13—H13120.0
C4—C3—C2116.86 (16)C12—C13—H13120.0
C4—C3—H3121.6C13—C14—C9121.03 (18)
C2—C3—H3121.6C13—C14—H14119.5
C3—C4—C5122.95 (18)C9—C14—H14119.5
C3—C4—Cl118.45 (15)C16—C15—C20121.14 (17)
C5—C4—Cl118.60 (14)C16—C15—S120.62 (13)
C6—C5—C4120.37 (16)C20—C15—S118.17 (13)
C6—C5—H5119.8C15—C16—C17118.89 (18)
C4—C5—H5119.8C15—C16—H16120.6
C5—C6—C7116.83 (17)C17—C16—H16120.6
C5—C6—H6121.6C18—C17—C16120.34 (19)
C7—C6—H6121.6C18—C17—H17119.8
O1—C7—C6125.88 (16)C16—C17—H17119.8
O1—C7—C2110.78 (14)C17—C18—C19120.68 (19)
C6—C7—C2123.33 (17)C17—C18—H18119.7
C1—C8—O1109.91 (15)C19—C18—H18119.7
C1—C8—C9135.11 (15)C20—C19—C18119.80 (19)
O1—C8—C9114.96 (15)C20—C19—H19120.1
C14—C9—C10118.28 (17)C18—C19—H19120.1
C14—C9—C8119.98 (16)C19—C20—C15119.13 (18)
C10—C9—C8121.73 (16)C19—C20—H20120.4
C11—C10—C9120.32 (18)C15—C20—H20120.4
O2—S—C1—C8154.75 (16)C7—O1—C8—C11.18 (18)
C15—S—C1—C894.95 (17)C7—O1—C8—C9180.00 (14)
O2—S—C1—C224.56 (16)C1—C8—C9—C14162.7 (2)
C15—S—C1—C285.74 (15)O1—C8—C9—C1415.7 (2)
C8—C1—C2—C3179.49 (19)C1—C8—C9—C1018.0 (3)
S—C1—C2—C30.1 (3)O1—C8—C9—C10163.57 (16)
C8—C1—C2—C70.36 (18)C14—C9—C10—C110.5 (3)
S—C1—C2—C7179.07 (12)C8—C9—C10—C11179.81 (17)
C7—C2—C3—C41.3 (2)C9—C10—C11—C120.1 (3)
C1—C2—C3—C4177.78 (18)C10—C11—C12—C130.3 (3)
C2—C3—C4—C51.0 (3)C11—C12—C13—C140.3 (3)
C2—C3—C4—Cl178.31 (13)C12—C13—C14—C90.0 (3)
C3—C4—C5—C60.2 (3)C10—C9—C14—C130.5 (3)
Cl—C4—C5—C6179.13 (15)C8—C9—C14—C13179.77 (19)
C4—C5—C6—C70.4 (3)O2—S—C15—C1612.69 (15)
C8—O1—C7—C6178.23 (17)C1—S—C15—C1697.05 (14)
C8—O1—C7—C21.43 (18)O2—S—C15—C20164.24 (13)
C5—C6—C7—O1179.52 (17)C1—S—C15—C2086.02 (14)
C5—C6—C7—C20.1 (3)C20—C15—C16—C171.7 (3)
C3—C2—C7—O1179.59 (14)S—C15—C16—C17178.56 (13)
C1—C2—C7—O11.11 (19)C15—C16—C17—C180.6 (3)
C3—C2—C7—C60.7 (3)C16—C17—C18—C190.7 (3)
C1—C2—C7—C6178.56 (17)C17—C18—C19—C200.9 (3)
C2—C1—C8—O10.50 (19)C18—C19—C20—C150.2 (3)
S—C1—C8—O1179.91 (12)C16—C15—C20—C191.6 (2)
C2—C1—C8—C9178.98 (18)S—C15—C20—C19178.46 (13)
S—C1—C8—C91.6 (3)

Experimental details

Crystal data
Chemical formulaC20H13ClO2S
Mr352.81
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.2726 (5), 9.4111 (5), 11.3811 (6)
α, β, γ (°)73.360 (1), 81.630 (1), 70.757 (1)
V3)800.25 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.24 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.915, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
6930, 3428, 2843
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.06
No. of reflections3428
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds