organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

3,3′-(2,2′-Bi-1H-imidazole-1,1′-di­yl)dipropanamide

aGemmological Institute, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China, and bChina University of Geosciences, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Wuhan, Hubei 430074, People's Republic of China
*Correspondence e-mail: yingtaorencug@yahoo.cn

(Received 21 July 2009; accepted 22 July 2009; online 29 July 2009)

In the title compound, C12H16N6O2, the two imidazole rings are coplanar as a center of inversion exists midway along the C—C bond joining the two rings. In the crystal, inter­molecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds link adjacent mol­ecules into a two-dimensional layer structure parallel to (001).

Related literature

For the coordination chemistry and biological activity of bis-imidazoles, see: Kirchner & Krebs (1987[Kirchner, C. & Krebs, B. (1987). Inorg. Chem. 26, 3569-3576.]); Tadokoro et al. (1999[Tadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Tovoda, J., Tashiro, K. & Nakasuji, K. (1999). Angew. Chem. Int. Ed. 38, 95-98.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N6O2

  • Mr = 276.31

  • Monoclinic, C 2/c

  • a = 18.445 (4) Å

  • b = 4.8622 (10) Å

  • c = 13.446 (3) Å

  • β = 93.38 (3)°

  • V = 1203.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.58 × 0.46 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.936, Tmax = 0.980

  • 4987 measured reflections

  • 1381 independent reflections

  • 1237 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.22

  • 1381 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.22 3.055 (1) 164
N3—H3B⋯O1ii 0.86 2.13 2.967 (2) 165
C5—H5B⋯O1ii 0.97 2.58 3.293 (3) 130
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing investigations, the title compound, L3, C12H16N6O2, as a derivative of 2,2'-bimidazole whose compounds were abstacted for their coordination chemistry and biological activity (Kirchner et al., 1987; Todokoro et al., 1999), has been synthesized and structurally characterized. The single imidazole ring exhibits nearly perfect coplanarity with the maximal deviation of 0.001 (1) Å and the two imidazole rings are coplanar. There are intermolecular N—H···N, N—H···O, C—H···O and C—H···N hydrogen bonds, which leads to two-dimensional layers parallel to (001). Eventually, the crystal packing is established by van der Waals forces.

Related literature top

For the coordination chemistry and biological activity of bis-imidazoles, see: Kirchner et al. (1987); Tadokoro et al. (1999).

Experimental top

A solution of acrylamide (14.2 g, 0.20 mol) in 50 ml DMF was dropwise added to a stirred suspension of 2,2'-biimidazole (13.4 g, 0.1 mol) and NaOH (0.8 g, 0.02 mol) in 100 ml DMF at 80°C, the colour of the resulting solution varied from colourless through green to orange. After the mixture was refluxed for six hours, the crude product was obtained by removement of DMF solvent under reduced pressure. The product was isolated,washed by 10 ml aether for three times, and then dried in vacuo to give the pure compound L3 in a 74.3% yield. Colourless single crystals of L3 suitable for single X-ray analysis were recrystallized by slow evaporation of a deionized aqueous solution.1H NMR (400 MHz, D2O, 25°C, TMS, p.p.m.) δ: 8.402(s, 4H), 7.306(s, 2H), 7.140(s, 2H), 4.374(s, 4H), 2.627(s, 4H). 13C NMR (400 MHz, D2O, 25°C, TMS, p.p.m.) δ:171.53, 136.57, 128.15, 122.39, 42.96, 35.06. IR (KBr, cm-1): 3388m, 1674 s, 1409 s, 1267 s, 769 s. Anal. Calcd for L3 (%): C, 52.17; H, 5.80; N, 30.22. Found: C, 52.12; H, 5.70; N, 29.89.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, Displacement ellipsoids are drawn at the 45% probability level.[Symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1]
3,3'-(2,2'-Bi-1H-imidazole-1,1'-diyl)dipropanamide top
Crystal data top
C12H16N6O2F(000) = 584
Mr = 276.31Dx = 1.525 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1381 reflections
a = 18.445 (4) Åθ = 3.0–27.5°
b = 4.8622 (10) ŵ = 0.11 mm1
c = 13.446 (3) ÅT = 295 K
β = 93.38 (3)°Platelet, colorless
V = 1203.8 (5) Å30.58 × 0.46 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1381 independent reflections
Radiation source: fine-focus sealed tube1237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2323
Tmin = 0.936, Tmax = 0.980k = 66
4987 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0012P)2 + 5.254P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
1381 reflectionsΔρmax = 0.33 e Å3
92 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (5)
Crystal data top
C12H16N6O2V = 1203.8 (5) Å3
Mr = 276.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.445 (4) ŵ = 0.11 mm1
b = 4.8622 (10) ÅT = 295 K
c = 13.446 (3) Å0.58 × 0.46 × 0.20 mm
β = 93.38 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1381 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1237 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.980Rint = 0.017
4987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.22Δρmax = 0.33 e Å3
1381 reflectionsΔρmin = 0.28 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47285 (8)0.1364 (3)0.37688 (12)0.0174 (4)
N30.52500 (9)0.5591 (4)0.38322 (12)0.0125 (4)
H3A0.56830.49330.38460.015*
H3B0.51840.73410.38460.015*
C30.21467 (11)0.3911 (4)0.33180 (15)0.0120 (4)
H3C0.22030.25200.28540.014*
C40.33714 (10)0.3479 (4)0.41994 (15)0.0112 (4)
H4A0.33700.16790.38880.013*
H4B0.34970.32410.49050.013*
N10.26419 (9)0.4700 (4)0.40652 (12)0.0100 (4)
C60.46787 (11)0.3892 (4)0.37902 (14)0.0112 (4)
C20.15558 (10)0.5566 (4)0.33885 (15)0.0119 (4)
H2A0.11360.54770.29710.014*
C10.23297 (10)0.6812 (4)0.45616 (14)0.0097 (4)
N20.16681 (9)0.7385 (4)0.41640 (13)0.0117 (4)
C50.39394 (10)0.5287 (4)0.37442 (15)0.0122 (4)
H5A0.37890.56780.30550.015*
H5B0.39760.70200.41010.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0133 (7)0.0105 (7)0.0283 (9)0.0017 (6)0.0008 (6)0.0010 (6)
N30.0091 (7)0.0106 (8)0.0179 (9)0.0016 (6)0.0007 (6)0.0000 (7)
C30.0126 (9)0.0118 (9)0.0116 (9)0.0017 (8)0.0006 (7)0.0008 (8)
C40.0085 (9)0.0106 (9)0.0147 (9)0.0022 (7)0.0011 (7)0.0001 (8)
N10.0082 (7)0.0095 (8)0.0124 (8)0.0000 (6)0.0008 (6)0.0003 (7)
C60.0107 (9)0.0132 (10)0.0095 (9)0.0019 (8)0.0004 (7)0.0005 (8)
C20.0096 (9)0.0132 (10)0.0127 (9)0.0019 (7)0.0006 (7)0.0005 (8)
C10.0094 (8)0.0090 (9)0.0109 (9)0.0000 (7)0.0020 (7)0.0009 (7)
N20.0088 (8)0.0113 (8)0.0149 (8)0.0005 (6)0.0005 (6)0.0011 (7)
C50.0091 (9)0.0114 (9)0.0162 (10)0.0010 (7)0.0008 (7)0.0018 (8)
Geometric parameters (Å, º) top
O1—C61.233 (3)C4—H4B0.9700
N3—C61.337 (3)N1—C11.370 (3)
N3—H3A0.8600C6—C51.521 (3)
N3—H3B0.8600C2—N21.374 (3)
C3—C21.362 (3)C2—H2A0.9300
C3—N11.372 (3)C1—N21.332 (2)
C3—H3C0.9300C1—C1i1.465 (4)
C4—N11.472 (2)C5—H5A0.9700
C4—C51.523 (3)C5—H5B0.9700
C4—H4A0.9700
C6—N3—H3A120.0O1—C6—C5120.75 (19)
C6—N3—H3B120.0N3—C6—C5115.39 (18)
H3A—N3—H3B120.0C3—C2—N2110.33 (17)
C2—C3—N1106.55 (18)C3—C2—H2A124.8
C2—C3—H3C126.7N2—C2—H2A124.8
N1—C3—H3C126.7N2—C1—N1111.26 (17)
N1—C4—C5111.30 (16)N2—C1—C1i124.5 (2)
N1—C4—H4A109.4N1—C1—C1i124.2 (2)
C5—C4—H4A109.4C1—N2—C2105.28 (17)
N1—C4—H4B109.4C6—C5—C4111.26 (17)
C5—C4—H4B109.4C6—C5—H5A109.4
H4A—C4—H4B108.0C4—C5—H5A109.4
C1—N1—C3106.58 (16)C6—C5—H5B109.4
C1—N1—C4130.54 (16)C4—C5—H5B109.4
C3—N1—C4122.78 (17)H5A—C5—H5B108.0
O1—C6—N3123.84 (19)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2ii0.862.223.055 (1)164
N3—H3B···O1iii0.862.132.967 (2)165
C4—H4B···N2i0.972.502.985 (2)111
C5—H5B···O1iii0.972.583.293 (3)130
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H16N6O2
Mr276.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.445 (4), 4.8622 (10), 13.446 (3)
β (°) 93.38 (3)
V3)1203.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.46 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.936, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4987, 1381, 1237
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.22
No. of reflections1381
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: RAPID-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.8602.2193.055 (1)163.89
N3—H3B···O1ii0.8602.1292.967 (2)164.58
C5—H5B···O1ii0.9702.5813.293 (3)130.36
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z.
 

Acknowledgements

We thank the China University of Geosciences for financial support. We are grateful to Mr Z.-F. Li for collecting the diffraction data.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKirchner, C. & Krebs, B. (1987). Inorg. Chem. 26, 3569–3576.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Tovoda, J., Tashiro, K. & Nakasuji, K. (1999). Angew. Chem. Int. Ed. 38, 95–98.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds