metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ-1,4-bis­­(imidazol-1-ylmeth­yl)benzene]bis­­(μ4-cyclo­hexane-1,4-di­carboxyl­ato)dinickel(II)]

aDepartment of Bioengineering, Henan University of Urban Construction, Pingdingshan 467000, People's Republic of China, bSchool of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and cDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
*Correspondence e-mail: libingbinghncj@yahoo.com.cn

(Received 21 July 2009; accepted 23 July 2009; online 31 July 2009)

The structure of the polymeric title compound, [Ni2(C8H10O4)2(C14H14N4)]n, features a five-coordinate NiII centre defined by four carboxyl­ate O atoms from two different cyclo­hexane-1,4-dicarboxyl­ate (chdc) ligands and an N atom from one end of a 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) mol­ecule. The NO4 coordination geometry is distorted square-pyramidal with the N atom in the apical position. Each end of the chdc ligand links pairs of NiII atoms into a paddle-wheel assembly, i.e. Ni2(O2CR′)4. These are connected into rows owing to the bridging nature of the chdc ligands, and the rows are connected into a two-dimensional grid via the 1,4-bix ligands. The 1,4-bix ligand, which is disposed about a centre of inversion, is disorderd. Two positions of equal occupancy were discerned for the –H2C(C6H4)CH2– residue.

Related literature

For background to coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.]); Kim & Jung (2002[Kim, Y. J. & Jung, D.-Y. (2002). Chem. Commun. pp. 908-909.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]). For a related Ni(II) structure, see: Lee et al. (2003[Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J.-H. & Kwon, Y.-U. (2003). Inorg. Chim. Acta, 353, 151-158.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C8H10O4)2(C14H14N4)]

  • Mr = 696.03

  • Triclinic, [P \overline 1]

  • a = 8.4966 (6) Å

  • b = 8.8076 (6) Å

  • c = 10.7327 (8) Å

  • α = 93.567 (6)°

  • β = 100.608 (6)°

  • γ = 105.807 (6)°

  • V = 754.22 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.31 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.557, Tmax = 0.791

  • 6115 measured reflections

  • 2640 independent reflections

  • 2287 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.11

  • 2640 reflections

  • 224 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal–organic coordination polymers continue to attract considerable interest owing to their well documented and varied applications (Yang et al., 2008). These coordination polymers can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Kim & Jung, 2002). The selection of ligand is extremely important because changing their geometries can control the topologies of the resulting coordination frameworks. While the rigid rod-like spacer, 4,4'-bipyridine, is well known in the construction of metal-organic polymers, flexible N-donor ligands such as 1,4-bis(imidazole-1-ylmethyl)benzene (1,4-bix) have not been so well explored. In this work, 1,4-bix assembles with nickel cyclohexane-1,4-dicarboxylate (chdc) to furnish [Ni(chdc)(1,4-bix)0.5], (I), which exists as a 2-D array.

The asymmetric unit of (I) comprises a Ni atom, a chdc dianion, and half a 1-4-bix molecule which is disposed about a centre of inversion (Fig. 1). Each end of the chdc ligand bridges a pair of Ni atoms to result in the formation of a paddle-wheel assembly, i.e. Ni2(O2CR')4. These are linked into rows which, in turn, are linked via the bridging 1,4-bix ligands into a 2-D array in the bc plane (Fig. 2). The layers are stacked in an ···ABC··· fashion (Fig. 3). The coordination geometry is based on a NO4 donor set that defines a square pyramid with the N donor atom in the apical position. If the second Ni atom in the paddle-wheel assembly is considered as occupying a coordination site, the Ni···Nii distance is 2.6529 (10) Å, the coordination geometry would be distorted octahedral; symmetry operation i: 2-x, 1-y, 1-z.

Related literature top

For background to coordination polymers, see: Batten & Robson (1998); Kim & Jung (2002); Yang et al. (2008). For a related Ni(II) structure, see: Lee et al. (2003).

Experimental top

Nickel chloride hexahydrate (0.118 g, 0.5 mmol), H2chdc (0.135 g, 0.5 mmol) and 1,4-bix (0.093 g, 0.5 mmol) were placed in water (12 ml), and triethylamine was added until the pH value of the solution was 5.7. The solution was heated in a 23-ml Teflon-lined stainless-steel autoclave at 440 K for 5 days. The autoclave was allowed to cool to room temperature over several hours. Green blocks were isolated in about 61% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Disorder was noted in bridging 1,4-bix molecule. Two positions of equal weight (from refinement) were discerned for the -H2C(C6H4)CH2- residue but not for the imidazole ring, although several of the atoms exhibited elongated displacement ellipsoids. The atoms of this ring were restrained to be approximately isotropic with application of the ISOR command in SHELXL-97 (Sheldrick, 2008).

The maximum and minimum residual electron density peaks of 1.30 and -1.25 eÅ-3, respectively, were located 0.95 Å and 1.58 Å from the C26 and H13 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the polymeric structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disordered -CH2(C6H4)CH2- residue is shown.
[Figure 2] Fig. 2. View of the 2-D array in (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. View of the stacking of the layers in the crystal structure of (I). H atoms have been omitted for clarity.
Poly[[µ-1,4-bis(imidazol-1-ylmethyl)benzene]bis(µ4-cyclohexane-1,4- dicarboxylato)dinickel(II)] top
Crystal data top
[Ni2(C8H10O4)2(C14H14N4)]Z = 1
Mr = 696.03F(000) = 362
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4966 (6) ÅCell parameters from 3051 reflections
b = 8.8076 (6) Åθ = 3.0–26.4°
c = 10.7327 (8) ŵ = 1.31 mm1
α = 93.567 (6)°T = 293 K
β = 100.608 (6)°Block, green
γ = 105.807 (6)°0.31 × 0.22 × 0.18 mm
V = 754.22 (9) Å3
Data collection top
Bruker SMART APEX
diffractometer
2640 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.557, Tmax = 0.791k = 1010
6115 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0653P)2 + 2.0659P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 1.30 e Å3
36 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Ni2(C8H10O4)2(C14H14N4)]γ = 105.807 (6)°
Mr = 696.03V = 754.22 (9) Å3
Triclinic, P1Z = 1
a = 8.4966 (6) ÅMo Kα radiation
b = 8.8076 (6) ŵ = 1.31 mm1
c = 10.7327 (8) ÅT = 293 K
α = 93.567 (6)°0.31 × 0.22 × 0.18 mm
β = 100.608 (6)°
Data collection top
Bruker SMART APEX
diffractometer
2640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2287 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.791Rint = 0.025
6115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05236 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 1.30 e Å3
2640 reflectionsΔρmin = 1.25 e Å3
224 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni1.02456 (6)0.46763 (6)0.61988 (5)0.0239 (2)
O10.9631 (4)0.6690 (4)0.6585 (3)0.0338 (7)
O20.9113 (4)0.7154 (4)0.4545 (3)0.0335 (7)
O30.2691 (4)0.5884 (4)0.6790 (3)0.0397 (8)
O40.2180 (4)0.6331 (4)0.4772 (3)0.0418 (8)
N10.9779 (5)0.3729 (5)0.7773 (4)0.0437 (8)
C10.9120 (5)0.7449 (5)0.5710 (4)0.0264 (9)
C20.8505 (5)0.8851 (5)0.6088 (4)0.0297 (10)
H20.94730.98010.62640.036*
C30.7810 (5)0.8673 (6)0.7302 (4)0.0358 (11)
H3A0.86160.84250.79620.043*
H3B0.76550.96750.75970.043*
C40.6153 (5)0.7376 (6)0.7096 (4)0.0323 (10)
H4A0.57400.73290.78820.039*
H4B0.63190.63560.68700.039*
C50.4869 (5)0.7705 (5)0.6037 (4)0.0245 (9)
H50.47630.87500.63050.029*
C60.5532 (5)0.7863 (6)0.4803 (4)0.0298 (10)
H6A0.56670.68540.45010.036*
H6B0.47260.81260.41520.036*
C70.7204 (5)0.9147 (6)0.5016 (5)0.0340 (11)
H7A0.70401.01720.52260.041*
H7B0.76200.91790.42310.041*
C80.3134 (5)0.6545 (5)0.5852 (4)0.0287 (10)
C91.0595 (8)0.2825 (7)0.8462 (5)0.0573 (9)
H91.14990.25200.82740.069*
C100.9880 (8)0.2448 (7)0.9457 (6)0.0573 (9)
H101.01910.18241.00700.069*
C110.8601 (8)0.3888 (7)0.8366 (5)0.0573 (9)
H110.78420.44490.80980.069*
N20.8646 (6)0.3123 (5)0.9419 (4)0.0437 (8)0.50
C120.782 (2)0.287 (2)1.0446 (17)0.047 (4)0.50
H12A0.73090.37191.05580.057*0.50
H12B0.86380.29311.12220.057*0.50
C130.645 (2)0.125 (2)1.025 (2)0.037 (4)0.50
C140.653 (4)0.031 (4)1.109 (3)0.063 (7)0.50
H140.74480.03291.17170.075*0.50
C150.520 (3)0.084 (3)0.916 (2)0.050 (5)0.50
H150.54600.13670.84690.060*0.50
N2'0.8646 (6)0.3123 (5)0.9419 (4)0.0437 (8)0.50
C12'0.716 (2)0.324 (2)1.0150 (16)0.059 (5)0.50
H12C0.76360.36491.10410.071*0.50
H12D0.65980.39750.97680.071*0.50
C13'0.594 (3)0.164 (2)1.005 (2)0.045 (5)0.50
C14'0.606 (3)0.063 (4)1.104 (3)0.057 (8)0.50
H14'0.66700.11561.18320.068*0.50
C15'0.464 (3)0.114 (3)0.898 (3)0.055 (5)0.50
H15'0.42710.17660.83970.066*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0223 (3)0.0278 (3)0.0238 (3)0.0071 (2)0.0085 (2)0.0080 (2)
O10.0353 (17)0.0345 (18)0.0354 (17)0.0157 (14)0.0079 (14)0.0050 (14)
O20.0375 (18)0.0329 (18)0.0368 (18)0.0149 (14)0.0161 (14)0.0087 (14)
O30.0254 (16)0.043 (2)0.049 (2)0.0002 (14)0.0171 (15)0.0070 (16)
O40.0239 (16)0.044 (2)0.049 (2)0.0069 (15)0.0055 (15)0.0014 (16)
N10.0501 (18)0.0403 (17)0.0287 (15)0.0138 (14)0.0191 (13)0.0039 (13)
C10.0152 (18)0.024 (2)0.039 (3)0.0019 (16)0.0096 (17)0.0062 (19)
C20.0181 (19)0.022 (2)0.047 (3)0.0016 (17)0.0077 (18)0.0006 (19)
C30.024 (2)0.046 (3)0.033 (2)0.010 (2)0.0002 (18)0.010 (2)
C40.024 (2)0.049 (3)0.026 (2)0.012 (2)0.0081 (18)0.010 (2)
C50.0177 (19)0.026 (2)0.031 (2)0.0065 (17)0.0069 (17)0.0043 (17)
C60.024 (2)0.038 (3)0.030 (2)0.0124 (19)0.0068 (17)0.0096 (19)
C70.028 (2)0.034 (3)0.050 (3)0.014 (2)0.021 (2)0.017 (2)
C80.020 (2)0.028 (2)0.041 (3)0.0090 (18)0.0101 (19)0.0035 (19)
C90.065 (2)0.050 (2)0.0432 (18)0.0045 (16)0.0031 (16)0.0189 (15)
C100.065 (2)0.050 (2)0.0432 (18)0.0045 (16)0.0031 (16)0.0189 (15)
C110.065 (2)0.050 (2)0.0432 (18)0.0045 (16)0.0031 (16)0.0189 (15)
N20.0501 (18)0.0403 (17)0.0287 (15)0.0138 (14)0.0191 (13)0.0039 (13)
C120.048 (10)0.042 (8)0.041 (8)0.010 (6)0.020 (7)0.003 (6)
C130.041 (9)0.033 (10)0.036 (8)0.002 (6)0.021 (7)0.006 (6)
C140.058 (15)0.064 (14)0.065 (11)0.004 (10)0.041 (10)0.009 (10)
C150.057 (14)0.056 (11)0.039 (9)0.008 (9)0.022 (10)0.013 (8)
N2'0.0501 (18)0.0403 (17)0.0287 (15)0.0138 (14)0.0191 (13)0.0039 (13)
C12'0.070 (13)0.054 (11)0.040 (10)0.020 (8)0.044 (9)0.016 (7)
C13'0.064 (13)0.031 (9)0.039 (9)0.007 (7)0.042 (10)0.001 (7)
C14'0.050 (13)0.071 (15)0.035 (9)0.013 (10)0.030 (9)0.026 (9)
C15'0.047 (12)0.058 (13)0.056 (12)0.001 (8)0.022 (10)0.010 (8)
Geometric parameters (Å, º) top
Ni—N11.987 (4)C7—H7A0.9700
Ni—O2i2.003 (3)C7—H7B0.9700
Ni—O3ii2.019 (3)C9—C101.339 (8)
Ni—O12.021 (3)C9—H90.9300
Ni—O4iii2.054 (3)C10—N21.334 (8)
Ni—Nii2.6529 (10)C10—N2'1.334 (8)
O1—C11.266 (5)C10—H100.9300
O2—C11.260 (5)C11—N21.352 (7)
O2—Nii2.003 (3)C11—N2'1.352 (7)
O3—C81.260 (6)C11—H110.9300
O3—Niiv2.019 (3)N2—C121.409 (18)
O4—C81.256 (6)C12—C131.55 (3)
O4—Niiii2.054 (3)C12—H12A0.9700
N1—C111.314 (8)C12—H12B0.9700
N1—C91.360 (8)C13—C141.27 (5)
C1—C21.526 (6)C13—C151.38 (3)
C2—C31.526 (6)C14—C15v1.50 (4)
C2—C71.530 (6)C14—H140.9300
C2—H20.9800C15—C14v1.50 (4)
C3—C41.521 (6)C15—H150.9300
C3—H3A0.9700N2'—C12'1.626 (16)
C3—H3B0.9700C12'—C13'1.49 (3)
C4—C51.524 (6)C12'—H12C0.9700
C4—H4A0.9700C12'—H12D0.9700
C4—H4B0.9700C13'—C15'1.39 (4)
C5—C81.517 (6)C13'—C14'1.43 (5)
C5—C61.531 (6)C14'—C15'v1.50 (5)
C5—H50.9800C14'—H14'0.9300
C6—C71.525 (6)C15'—C14'v1.50 (5)
C6—H6A0.9700C15'—H15'0.9300
C6—H6B0.9700
N1—Ni—O2i95.33 (16)C6—C7—H7B109.2
N1—Ni—O3ii100.50 (16)C2—C7—H7B109.2
O2i—Ni—O3ii89.68 (14)H7A—C7—H7B107.9
N1—Ni—O196.72 (16)O4—C8—O3122.9 (4)
O2i—Ni—O1167.83 (12)O4—C8—C5118.1 (4)
O3ii—Ni—O189.76 (14)O3—C8—C5119.0 (4)
N1—Ni—O4iii92.29 (16)C10—C9—N1108.5 (6)
O2i—Ni—O4iii89.74 (14)C10—C9—H9125.7
O3ii—Ni—O4iii167.19 (14)N1—C9—H9125.7
O1—Ni—O4iii88.12 (13)N2—C10—N20.00 (18)
N1—Ni—Nii159.62 (13)N2—C10—C9108.3 (5)
O2i—Ni—Nii83.45 (9)N2'—C10—C9108.3 (5)
O3ii—Ni—Nii99.83 (10)N2—C10—H10125.9
O1—Ni—Nii84.67 (9)N2'—C10—H10125.9
O4iii—Ni—Nii67.40 (10)C9—C10—H10125.9
C1—O1—Ni122.0 (3)N1—C11—N2110.5 (6)
C1—O2—Nii124.7 (3)N1—C11—N2'110.5 (6)
C8—O3—Niiv106.2 (3)N2—C11—N20.0 (3)
C8—O4—Niiii143.4 (3)N1—C11—H11124.7
C11—N1—C9106.2 (5)N2—C11—H11124.7
C11—N1—Ni125.6 (4)N2'—C11—H11124.7
C9—N1—Ni128.2 (4)C10—N2—C11106.4 (5)
O2—C1—O1124.8 (4)C10—N2—C12114.4 (8)
O2—C1—C2117.1 (4)C11—N2—C12139.1 (8)
O1—C1—C2118.1 (4)N2—C12—C13112.9 (15)
C1—C2—C3112.5 (4)N2—C12—H12A109.0
C1—C2—C7112.5 (4)C13—C12—H12A109.0
C3—C2—C7109.7 (3)N2'—C12—H12B109.0
C1—C2—H2107.3C13—C12—H12B109.0
C3—C2—H2107.3H12A—C12—H12B107.8
C7—C2—H2107.3C14—C13—C15121 (2)
C4—C3—C2112.4 (4)C14—C13—C12119 (2)
C4—C3—H3A109.1C15—C13—C12120.2 (18)
C2—C3—H3A109.1C13—C14—C15v105 (3)
C4—C3—H3B109.1C13—C14—H14127.7
C2—C3—H3B109.1C15v—C14—H14127.7
H3A—C3—H3B107.9C13—C15—C14v131 (3)
C3—C4—C5110.5 (4)C13—C15—H15114.6
C3—C4—H4A109.6C14v—C15—H15114.6
C5—C4—H4A109.6C10—N2—C11106.4 (5)
C3—C4—H4B109.6C10—N2—C12'141.6 (8)
C5—C4—H4B109.6C11—N2—C12'111.8 (9)
H4A—C4—H4B108.1C13'—C12'—N2109.7 (13)
C8—C5—C4113.8 (4)C13'—C12'—H12C109.7
C8—C5—C6113.3 (4)N2'—C12'—H12C109.7
C4—C5—C6110.4 (3)C13'—C12'—H12D109.7
C8—C5—H5106.2N2'—C12'—H12D109.7
C4—C5—H5106.2H12C—C12'—H12D108.2
C6—C5—H5106.2C15'—C13'—C14'119 (2)
C7—C6—C5111.1 (4)C15'—C13'—C12'118.9 (18)
C7—C6—H6A109.4C14'—C13'—C12'122 (2)
C5—C6—H6A109.4C13'—C14'—C15'v131 (2)
C7—C6—H6B109.4C13'—C14'—H14'114.4
C5—C6—H6B109.4C15'v—C14'—H14'114.4
H6A—C6—H6B108.0C13'—C15'—C14'v106 (2)
C6—C7—C2112.0 (4)C13'—C15'—H15'126.8
C6—C7—H7A109.2C14'v—C15'—H15'126.8
C2—C7—H7A109.2
N1—Ni—O1—C1153.4 (3)C11—N1—C9—C100.4 (6)
O2i—Ni—O1—C118.7 (8)Ni—N1—C9—C10179.5 (4)
O3ii—Ni—O1—C1106.0 (3)N1—C9—C10—N21.1 (7)
O4iii—Ni—O1—C161.3 (3)N1—C9—C10—N2'1.1 (7)
Nii—Ni—O1—C16.1 (3)C9—N1—C11—N20.4 (6)
O2i—Ni—N1—C11144.6 (5)Ni—N1—C11—N2178.7 (3)
O3ii—Ni—N1—C11124.7 (5)C9—N1—C11—N2'0.4 (6)
O1—Ni—N1—C1133.7 (5)Ni—N1—C11—N2'178.7 (3)
O4iii—Ni—N1—C1154.7 (5)N2—C10—N2—C110 (100)
Nii—Ni—N1—C1159.1 (7)C9—C10—N2—C111.3 (7)
O2i—Ni—N1—C936.5 (5)N2—C10—N2'—C120 (100)
O3ii—Ni—N1—C954.2 (5)C9—C10—N2'—C12177.6 (9)
O1—Ni—N1—C9145.2 (5)N1—C11—N2—C101.1 (6)
O4iii—Ni—N1—C9126.4 (5)N2—C11—N2—C100 (100)
Nii—Ni—N1—C9122.0 (5)N1—C11—N2'—C12177.4 (12)
Nii—O2—C1—O14.6 (6)N2—C11—N2'—C120 (100)
Nii—O2—C1—C2177.0 (3)C10—N2—C12—C1382.7 (13)
Ni—O1—C1—O28.1 (6)C11—N2—C12—C1398.9 (15)
Ni—O1—C1—C2173.4 (3)N2—C12—C13—C14124 (2)
O2—C1—C2—C3153.7 (4)N2—C12—C13—C1555 (2)
O1—C1—C2—C327.8 (5)C15—C13—C14—C15v19 (3)
O2—C1—C2—C729.2 (5)C12—C13—C14—C15v162.1 (17)
O1—C1—C2—C7152.3 (4)C14—C13—C15—C14v24 (4)
C1—C2—C3—C470.5 (5)C12—C13—C15—C14v157 (2)
C7—C2—C3—C455.6 (5)N2—C10—N2—C110 (100)
C2—C3—C4—C557.3 (5)C9—C10—N2—C111.3 (7)
C3—C4—C5—C8174.8 (4)N2—C10—N2'—C12'0 (100)
C3—C4—C5—C656.5 (5)C9—C10—N2'—C12'176.8 (11)
C8—C5—C6—C7174.9 (3)N1—C11—N2—C101.1 (6)
C4—C5—C6—C756.2 (5)N2—C11—N2—C100 (100)
C5—C6—C7—C255.8 (5)N1—C11—N2'—C12'178.1 (8)
C1—C2—C7—C671.4 (5)N2—C11—N2'—C12'0 (100)
C3—C2—C7—C654.6 (5)C10—N2'—C12'—C13'62.7 (19)
Niiii—O4—C8—O38.4 (8)C11—N2'—C12'—C13'112.6 (15)
Niiii—O4—C8—C5169.0 (3)N2'—C12'—C13'—C15'86 (2)
Niiv—O3—C8—O44.3 (5)N2'—C12'—C13'—C14'94.8 (19)
Niiv—O3—C8—C5173.0 (3)C15'—C13'—C14'—C15'v22 (4)
C4—C5—C8—O4154.6 (4)C12'—C13'—C14'—C15'v159 (2)
C6—C5—C8—O427.4 (5)C14'—C13'—C15'—C14'v17 (3)
C4—C5—C8—O327.9 (5)C12'—C13'—C15'—C14'v163.9 (16)
C6—C5—C8—O3155.1 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni2(C8H10O4)2(C14H14N4)]
Mr696.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4966 (6), 8.8076 (6), 10.7327 (8)
α, β, γ (°)93.567 (6), 100.608 (6), 105.807 (6)
V3)754.22 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.31 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.557, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
6115, 2640, 2287
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.11
No. of reflections2640
No. of parameters224
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 1.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Acknowledgements

The authors thank Henan University of Urban Construction for supporting this work.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, Y. J. & Jung, D.-Y. (2002). Chem. Commun. pp. 908–909.  Web of Science CSD CrossRef Google Scholar
First citationLee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J.-H. & Kwon, Y.-U. (2003). Inorg. Chim. Acta, 353, 151–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds