metal-organic compounds
Poly[[μ-1,4-bis(imidazol-1-ylmethyl)benzene]bis(μ4-cyclohexane-1,4-dicarboxylato)dinickel(II)]
aDepartment of Bioengineering, Henan University of Urban Construction, Pingdingshan 467000, People's Republic of China, bSchool of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and cDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
*Correspondence e-mail: libingbinghncj@yahoo.com.cn
The structure of the polymeric title compound, [Ni2(C8H10O4)2(C14H14N4)]n, features a five-coordinate NiII centre defined by four carboxylate O atoms from two different cyclohexane-1,4-dicarboxylate (chdc) ligands and an N atom from one end of a 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) molecule. The NO4 coordination geometry is distorted square-pyramidal with the N atom in the apical position. Each end of the chdc ligand links pairs of NiII atoms into a paddle-wheel assembly, i.e. Ni2(O2CR′)4. These are connected into rows owing to the bridging nature of the chdc ligands, and the rows are connected into a two-dimensional grid via the 1,4-bix ligands. The 1,4-bix ligand, which is disposed about a centre of inversion, is disorderd. Two positions of equal occupancy were discerned for the –H2C(C6H4)CH2– residue.
Related literature
For background to coordination polymers, see: Batten & Robson (1998); Kim & Jung (2002); Yang et al. (2008). For a related Ni(II) structure, see: Lee et al. (2003).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809029249/ng2618sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029249/ng2618Isup2.hkl
Nickel chloride hexahydrate (0.118 g, 0.5 mmol), H2chdc (0.135 g, 0.5 mmol) and 1,4-bix (0.093 g, 0.5 mmol) were placed in water (12 ml), and triethylamine was added until the pH value of the solution was 5.7. The solution was heated in a 23-ml Teflon-lined stainless-steel autoclave at 440 K for 5 days. The autoclave was allowed to cool to room temperature over several hours. Green blocks were isolated in about 61% yield.
Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C).Disorder was noted in bridging 1,4-bix molecule. Two positions of equal weight (from refinement) were discerned for the -H2C(C6H4)CH2- residue but not for the imidazole ring, although several of the atoms exhibited elongated displacement ellipsoids. The atoms of this ring were restrained to be approximately isotropic with application of the ISOR command in SHELXL-97 (Sheldrick, 2008).
The maximum and minimum residual electron density peaks of 1.30 and -1.25 eÅ-3, respectively, were located 0.95 Å and 1.58 Å from the C26 and H13 atoms, respectively.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni2(C8H10O4)2(C14H14N4)] | Z = 1 |
Mr = 696.03 | F(000) = 362 |
Triclinic, P1 | Dx = 1.532 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4966 (6) Å | Cell parameters from 3051 reflections |
b = 8.8076 (6) Å | θ = 3.0–26.4° |
c = 10.7327 (8) Å | µ = 1.31 mm−1 |
α = 93.567 (6)° | T = 293 K |
β = 100.608 (6)° | Block, green |
γ = 105.807 (6)° | 0.31 × 0.22 × 0.18 mm |
V = 754.22 (9) Å3 |
Bruker SMART APEX diffractometer | 2640 independent reflections |
Radiation source: fine-focus sealed tube | 2287 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 25.0°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.557, Tmax = 0.791 | k = −10→10 |
6115 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0653P)2 + 2.0659P] where P = (Fo2 + 2Fc2)/3 |
2640 reflections | (Δ/σ)max < 0.001 |
224 parameters | Δρmax = 1.30 e Å−3 |
36 restraints | Δρmin = −1.25 e Å−3 |
[Ni2(C8H10O4)2(C14H14N4)] | γ = 105.807 (6)° |
Mr = 696.03 | V = 754.22 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.4966 (6) Å | Mo Kα radiation |
b = 8.8076 (6) Å | µ = 1.31 mm−1 |
c = 10.7327 (8) Å | T = 293 K |
α = 93.567 (6)° | 0.31 × 0.22 × 0.18 mm |
β = 100.608 (6)° |
Bruker SMART APEX diffractometer | 2640 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2287 reflections with I > 2σ(I) |
Tmin = 0.557, Tmax = 0.791 | Rint = 0.025 |
6115 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 36 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.11 | Δρmax = 1.30 e Å−3 |
2640 reflections | Δρmin = −1.25 e Å−3 |
224 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni | 1.02456 (6) | 0.46763 (6) | 0.61988 (5) | 0.0239 (2) | |
O1 | 0.9631 (4) | 0.6690 (4) | 0.6585 (3) | 0.0338 (7) | |
O2 | 0.9113 (4) | 0.7154 (4) | 0.4545 (3) | 0.0335 (7) | |
O3 | 0.2691 (4) | 0.5884 (4) | 0.6790 (3) | 0.0397 (8) | |
O4 | 0.2180 (4) | 0.6331 (4) | 0.4772 (3) | 0.0418 (8) | |
N1 | 0.9779 (5) | 0.3729 (5) | 0.7773 (4) | 0.0437 (8) | |
C1 | 0.9120 (5) | 0.7449 (5) | 0.5710 (4) | 0.0264 (9) | |
C2 | 0.8505 (5) | 0.8851 (5) | 0.6088 (4) | 0.0297 (10) | |
H2 | 0.9473 | 0.9801 | 0.6264 | 0.036* | |
C3 | 0.7810 (5) | 0.8673 (6) | 0.7302 (4) | 0.0358 (11) | |
H3A | 0.8616 | 0.8425 | 0.7962 | 0.043* | |
H3B | 0.7655 | 0.9675 | 0.7597 | 0.043* | |
C4 | 0.6153 (5) | 0.7376 (6) | 0.7096 (4) | 0.0323 (10) | |
H4A | 0.5740 | 0.7329 | 0.7882 | 0.039* | |
H4B | 0.6319 | 0.6356 | 0.6870 | 0.039* | |
C5 | 0.4869 (5) | 0.7705 (5) | 0.6037 (4) | 0.0245 (9) | |
H5 | 0.4763 | 0.8750 | 0.6305 | 0.029* | |
C6 | 0.5532 (5) | 0.7863 (6) | 0.4803 (4) | 0.0298 (10) | |
H6A | 0.5667 | 0.6854 | 0.4501 | 0.036* | |
H6B | 0.4726 | 0.8126 | 0.4152 | 0.036* | |
C7 | 0.7204 (5) | 0.9147 (6) | 0.5016 (5) | 0.0340 (11) | |
H7A | 0.7040 | 1.0172 | 0.5226 | 0.041* | |
H7B | 0.7620 | 0.9179 | 0.4231 | 0.041* | |
C8 | 0.3134 (5) | 0.6545 (5) | 0.5852 (4) | 0.0287 (10) | |
C9 | 1.0595 (8) | 0.2825 (7) | 0.8462 (5) | 0.0573 (9) | |
H9 | 1.1499 | 0.2520 | 0.8274 | 0.069* | |
C10 | 0.9880 (8) | 0.2448 (7) | 0.9457 (6) | 0.0573 (9) | |
H10 | 1.0191 | 0.1824 | 1.0070 | 0.069* | |
C11 | 0.8601 (8) | 0.3888 (7) | 0.8366 (5) | 0.0573 (9) | |
H11 | 0.7842 | 0.4449 | 0.8098 | 0.069* | |
N2 | 0.8646 (6) | 0.3123 (5) | 0.9419 (4) | 0.0437 (8) | 0.50 |
C12 | 0.782 (2) | 0.287 (2) | 1.0446 (17) | 0.047 (4) | 0.50 |
H12A | 0.7309 | 0.3719 | 1.0558 | 0.057* | 0.50 |
H12B | 0.8638 | 0.2931 | 1.1222 | 0.057* | 0.50 |
C13 | 0.645 (2) | 0.125 (2) | 1.025 (2) | 0.037 (4) | 0.50 |
C14 | 0.653 (4) | 0.031 (4) | 1.109 (3) | 0.063 (7) | 0.50 |
H14 | 0.7448 | 0.0329 | 1.1717 | 0.075* | 0.50 |
C15 | 0.520 (3) | 0.084 (3) | 0.916 (2) | 0.050 (5) | 0.50 |
H15 | 0.5460 | 0.1367 | 0.8469 | 0.060* | 0.50 |
N2' | 0.8646 (6) | 0.3123 (5) | 0.9419 (4) | 0.0437 (8) | 0.50 |
C12' | 0.716 (2) | 0.324 (2) | 1.0150 (16) | 0.059 (5) | 0.50 |
H12C | 0.7636 | 0.3649 | 1.1041 | 0.071* | 0.50 |
H12D | 0.6598 | 0.3975 | 0.9768 | 0.071* | 0.50 |
C13' | 0.594 (3) | 0.164 (2) | 1.005 (2) | 0.045 (5) | 0.50 |
C14' | 0.606 (3) | 0.063 (4) | 1.104 (3) | 0.057 (8) | 0.50 |
H14' | 0.6670 | 0.1156 | 1.1832 | 0.068* | 0.50 |
C15' | 0.464 (3) | 0.114 (3) | 0.898 (3) | 0.055 (5) | 0.50 |
H15' | 0.4271 | 0.1766 | 0.8397 | 0.066* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0223 (3) | 0.0278 (3) | 0.0238 (3) | 0.0071 (2) | 0.0085 (2) | 0.0080 (2) |
O1 | 0.0353 (17) | 0.0345 (18) | 0.0354 (17) | 0.0157 (14) | 0.0079 (14) | 0.0050 (14) |
O2 | 0.0375 (18) | 0.0329 (18) | 0.0368 (18) | 0.0149 (14) | 0.0161 (14) | 0.0087 (14) |
O3 | 0.0254 (16) | 0.043 (2) | 0.049 (2) | 0.0002 (14) | 0.0171 (15) | 0.0070 (16) |
O4 | 0.0239 (16) | 0.044 (2) | 0.049 (2) | 0.0069 (15) | −0.0055 (15) | −0.0014 (16) |
N1 | 0.0501 (18) | 0.0403 (17) | 0.0287 (15) | −0.0138 (14) | 0.0191 (13) | 0.0039 (13) |
C1 | 0.0152 (18) | 0.024 (2) | 0.039 (3) | 0.0019 (16) | 0.0096 (17) | 0.0062 (19) |
C2 | 0.0181 (19) | 0.022 (2) | 0.047 (3) | 0.0016 (17) | 0.0077 (18) | 0.0006 (19) |
C3 | 0.024 (2) | 0.046 (3) | 0.033 (2) | 0.010 (2) | −0.0002 (18) | −0.010 (2) |
C4 | 0.024 (2) | 0.049 (3) | 0.026 (2) | 0.012 (2) | 0.0081 (18) | 0.010 (2) |
C5 | 0.0177 (19) | 0.026 (2) | 0.031 (2) | 0.0065 (17) | 0.0069 (17) | 0.0043 (17) |
C6 | 0.024 (2) | 0.038 (3) | 0.030 (2) | 0.0124 (19) | 0.0068 (17) | 0.0096 (19) |
C7 | 0.028 (2) | 0.034 (3) | 0.050 (3) | 0.014 (2) | 0.021 (2) | 0.017 (2) |
C8 | 0.020 (2) | 0.028 (2) | 0.041 (3) | 0.0090 (18) | 0.0101 (19) | 0.0035 (19) |
C9 | 0.065 (2) | 0.050 (2) | 0.0432 (18) | −0.0045 (16) | 0.0031 (16) | 0.0189 (15) |
C10 | 0.065 (2) | 0.050 (2) | 0.0432 (18) | −0.0045 (16) | 0.0031 (16) | 0.0189 (15) |
C11 | 0.065 (2) | 0.050 (2) | 0.0432 (18) | −0.0045 (16) | 0.0031 (16) | 0.0189 (15) |
N2 | 0.0501 (18) | 0.0403 (17) | 0.0287 (15) | −0.0138 (14) | 0.0191 (13) | 0.0039 (13) |
C12 | 0.048 (10) | 0.042 (8) | 0.041 (8) | −0.010 (6) | 0.020 (7) | 0.003 (6) |
C13 | 0.041 (9) | 0.033 (10) | 0.036 (8) | 0.002 (6) | 0.021 (7) | −0.006 (6) |
C14 | 0.058 (15) | 0.064 (14) | 0.065 (11) | −0.004 (10) | 0.041 (10) | 0.009 (10) |
C15 | 0.057 (14) | 0.056 (11) | 0.039 (9) | 0.008 (9) | 0.022 (10) | 0.013 (8) |
N2' | 0.0501 (18) | 0.0403 (17) | 0.0287 (15) | −0.0138 (14) | 0.0191 (13) | 0.0039 (13) |
C12' | 0.070 (13) | 0.054 (11) | 0.040 (10) | −0.020 (8) | 0.044 (9) | −0.016 (7) |
C13' | 0.064 (13) | 0.031 (9) | 0.039 (9) | −0.007 (7) | 0.042 (10) | −0.001 (7) |
C14' | 0.050 (13) | 0.071 (15) | 0.035 (9) | −0.013 (10) | 0.030 (9) | −0.026 (9) |
C15' | 0.047 (12) | 0.058 (13) | 0.056 (12) | 0.001 (8) | 0.022 (10) | 0.010 (8) |
Ni—N1 | 1.987 (4) | C7—H7A | 0.9700 |
Ni—O2i | 2.003 (3) | C7—H7B | 0.9700 |
Ni—O3ii | 2.019 (3) | C9—C10 | 1.339 (8) |
Ni—O1 | 2.021 (3) | C9—H9 | 0.9300 |
Ni—O4iii | 2.054 (3) | C10—N2 | 1.334 (8) |
Ni—Nii | 2.6529 (10) | C10—N2' | 1.334 (8) |
O1—C1 | 1.266 (5) | C10—H10 | 0.9300 |
O2—C1 | 1.260 (5) | C11—N2 | 1.352 (7) |
O2—Nii | 2.003 (3) | C11—N2' | 1.352 (7) |
O3—C8 | 1.260 (6) | C11—H11 | 0.9300 |
O3—Niiv | 2.019 (3) | N2—C12 | 1.409 (18) |
O4—C8 | 1.256 (6) | C12—C13 | 1.55 (3) |
O4—Niiii | 2.054 (3) | C12—H12A | 0.9700 |
N1—C11 | 1.314 (8) | C12—H12B | 0.9700 |
N1—C9 | 1.360 (8) | C13—C14 | 1.27 (5) |
C1—C2 | 1.526 (6) | C13—C15 | 1.38 (3) |
C2—C3 | 1.526 (6) | C14—C15v | 1.50 (4) |
C2—C7 | 1.530 (6) | C14—H14 | 0.9300 |
C2—H2 | 0.9800 | C15—C14v | 1.50 (4) |
C3—C4 | 1.521 (6) | C15—H15 | 0.9300 |
C3—H3A | 0.9700 | N2'—C12' | 1.626 (16) |
C3—H3B | 0.9700 | C12'—C13' | 1.49 (3) |
C4—C5 | 1.524 (6) | C12'—H12C | 0.9700 |
C4—H4A | 0.9700 | C12'—H12D | 0.9700 |
C4—H4B | 0.9700 | C13'—C15' | 1.39 (4) |
C5—C8 | 1.517 (6) | C13'—C14' | 1.43 (5) |
C5—C6 | 1.531 (6) | C14'—C15'v | 1.50 (5) |
C5—H5 | 0.9800 | C14'—H14' | 0.9300 |
C6—C7 | 1.525 (6) | C15'—C14'v | 1.50 (5) |
C6—H6A | 0.9700 | C15'—H15' | 0.9300 |
C6—H6B | 0.9700 | ||
N1—Ni—O2i | 95.33 (16) | C6—C7—H7B | 109.2 |
N1—Ni—O3ii | 100.50 (16) | C2—C7—H7B | 109.2 |
O2i—Ni—O3ii | 89.68 (14) | H7A—C7—H7B | 107.9 |
N1—Ni—O1 | 96.72 (16) | O4—C8—O3 | 122.9 (4) |
O2i—Ni—O1 | 167.83 (12) | O4—C8—C5 | 118.1 (4) |
O3ii—Ni—O1 | 89.76 (14) | O3—C8—C5 | 119.0 (4) |
N1—Ni—O4iii | 92.29 (16) | C10—C9—N1 | 108.5 (6) |
O2i—Ni—O4iii | 89.74 (14) | C10—C9—H9 | 125.7 |
O3ii—Ni—O4iii | 167.19 (14) | N1—C9—H9 | 125.7 |
O1—Ni—O4iii | 88.12 (13) | N2—C10—N2 | 0.00 (18) |
N1—Ni—Nii | 159.62 (13) | N2—C10—C9 | 108.3 (5) |
O2i—Ni—Nii | 83.45 (9) | N2'—C10—C9 | 108.3 (5) |
O3ii—Ni—Nii | 99.83 (10) | N2—C10—H10 | 125.9 |
O1—Ni—Nii | 84.67 (9) | N2'—C10—H10 | 125.9 |
O4iii—Ni—Nii | 67.40 (10) | C9—C10—H10 | 125.9 |
C1—O1—Ni | 122.0 (3) | N1—C11—N2 | 110.5 (6) |
C1—O2—Nii | 124.7 (3) | N1—C11—N2' | 110.5 (6) |
C8—O3—Niiv | 106.2 (3) | N2—C11—N2 | 0.0 (3) |
C8—O4—Niiii | 143.4 (3) | N1—C11—H11 | 124.7 |
C11—N1—C9 | 106.2 (5) | N2—C11—H11 | 124.7 |
C11—N1—Ni | 125.6 (4) | N2'—C11—H11 | 124.7 |
C9—N1—Ni | 128.2 (4) | C10—N2—C11 | 106.4 (5) |
O2—C1—O1 | 124.8 (4) | C10—N2—C12 | 114.4 (8) |
O2—C1—C2 | 117.1 (4) | C11—N2—C12 | 139.1 (8) |
O1—C1—C2 | 118.1 (4) | N2—C12—C13 | 112.9 (15) |
C1—C2—C3 | 112.5 (4) | N2—C12—H12A | 109.0 |
C1—C2—C7 | 112.5 (4) | C13—C12—H12A | 109.0 |
C3—C2—C7 | 109.7 (3) | N2'—C12—H12B | 109.0 |
C1—C2—H2 | 107.3 | C13—C12—H12B | 109.0 |
C3—C2—H2 | 107.3 | H12A—C12—H12B | 107.8 |
C7—C2—H2 | 107.3 | C14—C13—C15 | 121 (2) |
C4—C3—C2 | 112.4 (4) | C14—C13—C12 | 119 (2) |
C4—C3—H3A | 109.1 | C15—C13—C12 | 120.2 (18) |
C2—C3—H3A | 109.1 | C13—C14—C15v | 105 (3) |
C4—C3—H3B | 109.1 | C13—C14—H14 | 127.7 |
C2—C3—H3B | 109.1 | C15v—C14—H14 | 127.7 |
H3A—C3—H3B | 107.9 | C13—C15—C14v | 131 (3) |
C3—C4—C5 | 110.5 (4) | C13—C15—H15 | 114.6 |
C3—C4—H4A | 109.6 | C14v—C15—H15 | 114.6 |
C5—C4—H4A | 109.6 | C10—N2—C11 | 106.4 (5) |
C3—C4—H4B | 109.6 | C10—N2—C12' | 141.6 (8) |
C5—C4—H4B | 109.6 | C11—N2—C12' | 111.8 (9) |
H4A—C4—H4B | 108.1 | C13'—C12'—N2 | 109.7 (13) |
C8—C5—C4 | 113.8 (4) | C13'—C12'—H12C | 109.7 |
C8—C5—C6 | 113.3 (4) | N2'—C12'—H12C | 109.7 |
C4—C5—C6 | 110.4 (3) | C13'—C12'—H12D | 109.7 |
C8—C5—H5 | 106.2 | N2'—C12'—H12D | 109.7 |
C4—C5—H5 | 106.2 | H12C—C12'—H12D | 108.2 |
C6—C5—H5 | 106.2 | C15'—C13'—C14' | 119 (2) |
C7—C6—C5 | 111.1 (4) | C15'—C13'—C12' | 118.9 (18) |
C7—C6—H6A | 109.4 | C14'—C13'—C12' | 122 (2) |
C5—C6—H6A | 109.4 | C13'—C14'—C15'v | 131 (2) |
C7—C6—H6B | 109.4 | C13'—C14'—H14' | 114.4 |
C5—C6—H6B | 109.4 | C15'v—C14'—H14' | 114.4 |
H6A—C6—H6B | 108.0 | C13'—C15'—C14'v | 106 (2) |
C6—C7—C2 | 112.0 (4) | C13'—C15'—H15' | 126.8 |
C6—C7—H7A | 109.2 | C14'v—C15'—H15' | 126.8 |
C2—C7—H7A | 109.2 | ||
N1—Ni—O1—C1 | −153.4 (3) | C11—N1—C9—C10 | 0.4 (6) |
O2i—Ni—O1—C1 | 18.7 (8) | Ni—N1—C9—C10 | 179.5 (4) |
O3ii—Ni—O1—C1 | 106.0 (3) | N1—C9—C10—N2 | −1.1 (7) |
O4iii—Ni—O1—C1 | −61.3 (3) | N1—C9—C10—N2' | −1.1 (7) |
Nii—Ni—O1—C1 | 6.1 (3) | C9—N1—C11—N2 | 0.4 (6) |
O2i—Ni—N1—C11 | −144.6 (5) | Ni—N1—C11—N2 | −178.7 (3) |
O3ii—Ni—N1—C11 | 124.7 (5) | C9—N1—C11—N2' | 0.4 (6) |
O1—Ni—N1—C11 | 33.7 (5) | Ni—N1—C11—N2' | −178.7 (3) |
O4iii—Ni—N1—C11 | −54.7 (5) | N2—C10—N2—C11 | 0 (100) |
Nii—Ni—N1—C11 | −59.1 (7) | C9—C10—N2—C11 | 1.3 (7) |
O2i—Ni—N1—C9 | 36.5 (5) | N2—C10—N2'—C12 | 0 (100) |
O3ii—Ni—N1—C9 | −54.2 (5) | C9—C10—N2'—C12 | −177.6 (9) |
O1—Ni—N1—C9 | −145.2 (5) | N1—C11—N2—C10 | −1.1 (6) |
O4iii—Ni—N1—C9 | 126.4 (5) | N2—C11—N2—C10 | 0 (100) |
Nii—Ni—N1—C9 | 122.0 (5) | N1—C11—N2'—C12 | 177.4 (12) |
Nii—O2—C1—O1 | 4.6 (6) | N2—C11—N2'—C12 | 0 (100) |
Nii—O2—C1—C2 | −177.0 (3) | C10—N2—C12—C13 | −82.7 (13) |
Ni—O1—C1—O2 | −8.1 (6) | C11—N2—C12—C13 | 98.9 (15) |
Ni—O1—C1—C2 | 173.4 (3) | N2—C12—C13—C14 | 124 (2) |
O2—C1—C2—C3 | 153.7 (4) | N2—C12—C13—C15 | −55 (2) |
O1—C1—C2—C3 | −27.8 (5) | C15—C13—C14—C15v | −19 (3) |
O2—C1—C2—C7 | 29.2 (5) | C12—C13—C14—C15v | 162.1 (17) |
O1—C1—C2—C7 | −152.3 (4) | C14—C13—C15—C14v | 24 (4) |
C1—C2—C3—C4 | −70.5 (5) | C12—C13—C15—C14v | −157 (2) |
C7—C2—C3—C4 | 55.6 (5) | N2—C10—N2—C11 | 0 (100) |
C2—C3—C4—C5 | −57.3 (5) | C9—C10—N2—C11 | 1.3 (7) |
C3—C4—C5—C8 | −174.8 (4) | N2—C10—N2'—C12' | 0 (100) |
C3—C4—C5—C6 | 56.5 (5) | C9—C10—N2'—C12' | 176.8 (11) |
C8—C5—C6—C7 | 174.9 (3) | N1—C11—N2—C10 | −1.1 (6) |
C4—C5—C6—C7 | −56.2 (5) | N2—C11—N2—C10 | 0 (100) |
C5—C6—C7—C2 | 55.8 (5) | N1—C11—N2'—C12' | −178.1 (8) |
C1—C2—C7—C6 | 71.4 (5) | N2—C11—N2'—C12' | 0 (100) |
C3—C2—C7—C6 | −54.6 (5) | C10—N2'—C12'—C13' | −62.7 (19) |
Niiii—O4—C8—O3 | 8.4 (8) | C11—N2'—C12'—C13' | 112.6 (15) |
Niiii—O4—C8—C5 | −169.0 (3) | N2'—C12'—C13'—C15' | −86 (2) |
Niiv—O3—C8—O4 | −4.3 (5) | N2'—C12'—C13'—C14' | 94.8 (19) |
Niiv—O3—C8—C5 | 173.0 (3) | C15'—C13'—C14'—C15'v | 22 (4) |
C4—C5—C8—O4 | −154.6 (4) | C12'—C13'—C14'—C15'v | −159 (2) |
C6—C5—C8—O4 | −27.4 (5) | C14'—C13'—C15'—C14'v | −17 (3) |
C4—C5—C8—O3 | 27.9 (5) | C12'—C13'—C15'—C14'v | 163.9 (16) |
C6—C5—C8—O3 | 155.1 (4) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(C8H10O4)2(C14H14N4)] |
Mr | 696.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.4966 (6), 8.8076 (6), 10.7327 (8) |
α, β, γ (°) | 93.567 (6), 100.608 (6), 105.807 (6) |
V (Å3) | 754.22 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.31 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.557, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6115, 2640, 2287 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.139, 1.11 |
No. of reflections | 2640 |
No. of parameters | 224 |
No. of restraints | 36 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.30, −1.25 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Acknowledgements
The authors thank Henan University of Urban Construction for supporting this work.
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494. Web of Science CrossRef Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kim, Y. J. & Jung, D.-Y. (2002). Chem. Commun. pp. 908–909. Web of Science CSD CrossRef Google Scholar
Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J.-H. & Kwon, Y.-U. (2003). Inorg. Chim. Acta, 353, 151–158. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal–organic coordination polymers continue to attract considerable interest owing to their well documented and varied applications (Yang et al., 2008). These coordination polymers can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Kim & Jung, 2002). The selection of ligand is extremely important because changing their geometries can control the topologies of the resulting coordination frameworks. While the rigid rod-like spacer, 4,4'-bipyridine, is well known in the construction of metal-organic polymers, flexible N-donor ligands such as 1,4-bis(imidazole-1-ylmethyl)benzene (1,4-bix) have not been so well explored. In this work, 1,4-bix assembles with nickel cyclohexane-1,4-dicarboxylate (chdc) to furnish [Ni(chdc)(1,4-bix)0.5], (I), which exists as a 2-D array.
The asymmetric unit of (I) comprises a Ni atom, a chdc dianion, and half a 1-4-bix molecule which is disposed about a centre of inversion (Fig. 1). Each end of the chdc ligand bridges a pair of Ni atoms to result in the formation of a paddle-wheel assembly, i.e. Ni2(O2CR')4. These are linked into rows which, in turn, are linked via the bridging 1,4-bix ligands into a 2-D array in the bc plane (Fig. 2). The layers are stacked in an ···ABC··· fashion (Fig. 3). The coordination geometry is based on a NO4 donor set that defines a square pyramid with the N donor atom in the apical position. If the second Ni atom in the paddle-wheel assembly is considered as occupying a coordination site, the Ni···Nii distance is 2.6529 (10) Å, the coordination geometry would be distorted octahedral; symmetry operation i: 2-x, 1-y, 1-z.