metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)nickel(II) ethane-1,2-diol solvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing, Jiangsu Province, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 29 May 2009; accepted 6 July 2009; online 11 July 2009)

In the title compound, [Ni(SO4)(C12H8N2)2]·C2H6O2, the coordination polyhedron around the Ni2+ ion is a distorted octahedron, with four N atoms from two phenanthroline groups and two O atoms from a bidentate sulfate ligand. The Ni2+ ion lies on a special position of site symmetry 2. Inter­molecular O—H⋯O hydrogen bonds help to stabilize the structure. The OH group of the ethane-1,2-diol solvent is disordered over two positions with equal occupancy.

Related literature

For Ni–phen complexes with chloride anions and water mol­ecules as a second ligand, see: Chen et al. (2005[Chen, J.-M., Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1724-m1726.]); Su & Xu (2005[Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. E61, m1738-m1740.]); Tang et al. (2007[Tang, X.-Y., Qiu, Y.-C., Sun, F. & Yue, S.-T. (2007). Acta Cryst. E63, m2515.]). For isostructural compounds, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]); Lu et al. (2006[Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891-m893.]); Zhu et al. (2006a[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006a). Acta Cryst. E62, m2688-m2689.],b[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006b). Acta Cryst. E62, m2725-m2726.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C12H8N2)2]·C2H6O2

  • Mr = 577.25

  • Monoclinic, C 2/c

  • a = 18.4551 (9) Å

  • b = 11.8839 (5) Å

  • c = 12.7526 (6) Å

  • β = 118.991 (6)°

  • V = 2446.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 295 K

  • 0.36 × 0.33 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2009[Oxford Diffraction (2009). ABSPACK and CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.731, Tmax = 0.781

  • 11586 measured reflections

  • 3010 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.08

  • 3010 reflections

  • 183 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.82 2.15 2.659 (7) 121
O3′—H3′⋯O1 0.82 2.47 2.763 (5) 102

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). ABSPACK and CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ni-phen (phen = phenanthroline) complexes with chloride-anion and water-molecule ligands have been synthesized and characterized by X-ray diffraction (Chen et al., 2005; Su & Xu, 2005; Tang et al., 2007). The title nickel complex [NiSO4(phen)2].C2H6O2, Fig. 1, is isostructural to the recently reported cobalt(II) and cadmium(II) analogs (Zhong et al., 2006; Lu et al., 2006). A twofold rotation axis passes through the Ni and S atoms, and also through the mid-point of the C—C bond of the solvent molcule. The NiII center has an octahedral geometry, with four N atoms from two phen groups and two O atoms from a bidentate sulfate ligand. The geometry of the phen and sulfate ligands are in good agreement with those reported in the two isomorphous complexes [ZnSO4(phen)2].C2H6O2 and [MnSO4(phen)2].C2H6O2 (Zhu et al., 2006a,b).

The ethane-1,2-diol solvent is disordered over two positions, and is hydrogen bonded to the sulfate ligand (Table 1).

Related literature top

For Ni–phen complexes with chloride anions and water molecules as a second ligand, see: Chen et al. (2005); Su & Xu (2005); Tang et al. (2007). For isomorphous analogs, see: Zhong et al. (2006); Lu et al. (2006); Zhu et al. (2006a,b).

Experimental top

Green block-shaped crystals of the title compound were obtained by a procedure similar to that described previously (Zhong et al., 2006), but with NiSO4.7H2O in place of CoSO4.7H2O.

Refinement top

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The O atom of the ethane-1,2-diol solvent is disordered over two positions with site-occupancy factors of 1/2, sharing a common atom C13. The C13—C13 i (i = -x, y, -z+3/2), C13—O3 and C13—O3' distances were restrained to 1.501 (4), 1.304 (5) and 1.339 (5) Å, respectively. The H atoms of the ethane-1,2-diol were located in a difference map and then allowed to ride on their parent atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator (-x, y, -z +3/2). Only one disorder component is shown.
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')nickel(II) ethane-1,2-diol solvate top
Crystal data top
[Ni(SO4)(C12H8N2)2]·C2H6O2F(000) = 1192
Mr = 577.25Dx = 1.567 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6902 reflections
a = 18.4551 (9) Åθ = 3.2–30.6°
b = 11.8839 (5) ŵ = 0.93 mm1
c = 12.7526 (6) ÅT = 295 K
β = 118.991 (6)°Block, green
V = 2446.4 (2) Å30.36 × 0.33 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3010 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.1241 pixels mm-1θmax = 28.3°, θmin = 3.2°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.731, Tmax = 0.781l = 1716
11586 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.296P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3010 reflectionsΔρmax = 0.35 e Å3
183 parametersΔρmin = 0.52 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (6)
Crystal data top
[Ni(SO4)(C12H8N2)2]·C2H6O2V = 2446.4 (2) Å3
Mr = 577.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.4551 (9) ŵ = 0.93 mm1
b = 11.8839 (5) ÅT = 295 K
c = 12.7526 (6) Å0.36 × 0.33 × 0.28 mm
β = 118.991 (6)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3010 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2009)
2467 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.781Rint = 0.029
11586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03617 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
3010 reflectionsΔρmin = 0.52 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.19859 (3)0.75000.02868 (15)
S10.00000.02657 (6)0.75000.02857 (19)
O20.05633 (9)0.05119 (13)0.65249 (13)0.0379 (4)
O10.04687 (11)0.09628 (15)0.71006 (17)0.0479 (5)
N10.07956 (11)0.21105 (15)0.67829 (16)0.0314 (4)
N20.08892 (12)0.30656 (14)0.87419 (16)0.0331 (4)
C50.14702 (13)0.27545 (18)0.74544 (17)0.0291 (4)
C70.28779 (15)0.4016 (2)0.8974 (2)0.0438 (6)
H70.33470.44280.94810.053*
C90.22836 (17)0.4292 (2)1.0353 (2)0.0458 (6)
H90.27430.47021.08930.055*
C40.21016 (14)0.2934 (2)0.7163 (2)0.0368 (5)
C80.22400 (15)0.38596 (19)0.92872 (19)0.0368 (5)
C120.15344 (13)0.32477 (17)0.85260 (18)0.0303 (5)
C60.28132 (15)0.3577 (2)0.7956 (2)0.0454 (6)
H60.32360.36940.77690.055*
C10.07228 (15)0.1648 (2)0.5783 (2)0.0391 (5)
H10.02600.12090.53100.047*
C20.13218 (17)0.1802 (2)0.5424 (2)0.0474 (6)
H20.12500.14810.47150.057*
C30.20060 (16)0.2421 (2)0.6110 (2)0.0475 (6)
H30.24130.25060.58850.057*
C100.16452 (19)0.4099 (2)1.0571 (2)0.0507 (7)
H100.16670.43751.12680.061*
C110.09572 (16)0.3488 (2)0.9757 (2)0.0428 (6)
H110.05270.33690.99270.051*
C130.0291 (3)0.4047 (3)0.7245 (4)0.0978 (14)
H13A0.08090.43510.78690.117*
H13B0.00730.46000.66060.117*
O30.0492 (5)0.3177 (5)0.6817 (6)0.098 (2)0.50
H3A0.07520.27270.73590.147*0.50
O3'0.0850 (3)0.3224 (4)0.7512 (6)0.0726 (17)0.50
H3'0.07920.29390.68910.109*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0250 (2)0.0289 (2)0.0293 (2)0.0000.01088 (16)0.000
S10.0222 (3)0.0282 (4)0.0318 (4)0.0000.0103 (3)0.000
O20.0302 (8)0.0346 (9)0.0318 (8)0.0013 (7)0.0014 (6)0.0005 (6)
O10.0430 (10)0.0455 (11)0.0622 (11)0.0066 (8)0.0310 (9)0.0055 (8)
N10.0282 (9)0.0318 (10)0.0304 (9)0.0019 (8)0.0111 (7)0.0032 (7)
N20.0377 (10)0.0293 (10)0.0325 (9)0.0029 (8)0.0172 (8)0.0026 (7)
C50.0266 (10)0.0280 (11)0.0282 (9)0.0013 (8)0.0097 (8)0.0015 (8)
C70.0300 (12)0.0428 (15)0.0448 (13)0.0097 (10)0.0072 (10)0.0017 (10)
C90.0495 (15)0.0406 (14)0.0351 (12)0.0087 (12)0.0109 (11)0.0088 (10)
C40.0307 (11)0.0397 (13)0.0387 (12)0.0003 (10)0.0157 (9)0.0034 (9)
C80.0375 (12)0.0297 (12)0.0326 (11)0.0042 (10)0.0088 (9)0.0003 (9)
C120.0300 (11)0.0267 (11)0.0278 (10)0.0001 (8)0.0091 (8)0.0013 (8)
C60.0295 (11)0.0544 (17)0.0491 (14)0.0070 (12)0.0164 (10)0.0007 (12)
C10.0381 (12)0.0429 (13)0.0336 (11)0.0037 (11)0.0154 (10)0.0085 (9)
C20.0504 (15)0.0572 (17)0.0388 (13)0.0021 (13)0.0248 (12)0.0087 (11)
C30.0428 (14)0.0621 (18)0.0453 (13)0.0046 (13)0.0275 (12)0.0026 (12)
C100.0664 (18)0.0476 (16)0.0360 (12)0.0080 (13)0.0231 (12)0.0121 (11)
C110.0522 (15)0.0417 (14)0.0386 (12)0.0074 (12)0.0252 (11)0.0086 (10)
C130.111 (3)0.066 (2)0.141 (3)0.002 (2)0.081 (3)0.002 (2)
O30.130 (5)0.087 (4)0.115 (4)0.009 (3)0.090 (4)0.017 (3)
O3'0.061 (3)0.042 (3)0.129 (5)0.017 (2)0.056 (3)0.028 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.0774 (18)C9—C81.418 (3)
Ni1—N12.0774 (18)C9—H90.9300
Ni1—N22.0805 (19)C4—C31.406 (3)
Ni1—N2i2.0805 (18)C4—C61.430 (3)
Ni1—O22.1077 (16)C8—C121.393 (3)
Ni1—O2i2.1077 (16)C6—H60.9300
Ni1—S12.6757 (8)C1—C21.398 (3)
S1—O1i1.4563 (17)C1—H10.9300
S1—O11.4563 (17)C2—C31.352 (4)
S1—O2i1.4926 (16)C2—H20.9300
S1—O21.4926 (16)C3—H30.9300
N1—C11.334 (3)C10—C111.392 (4)
N1—C51.355 (3)C10—H100.9300
N2—C111.337 (3)C11—H110.9300
N2—C121.363 (3)C13—O31.304 (5)
C5—C41.401 (3)C13—O3'1.339 (5)
C5—C121.438 (3)C13—C13i1.501 (4)
C7—C61.349 (4)C13—H13A0.9700
C7—C81.427 (4)C13—H13B0.9700
C7—H70.9300O3—H3A0.8200
C9—C101.355 (4)O3'—H3'0.8200
N1i—Ni1—N1171.82 (10)C8—C7—H7119.4
N1i—Ni1—N294.93 (7)C10—C9—C8119.0 (2)
N1—Ni1—N279.99 (7)C10—C9—H9120.5
N1i—Ni1—N2i79.99 (7)C8—C9—H9120.5
N1—Ni1—N2i94.93 (7)C5—C4—C3116.9 (2)
N2—Ni1—N2i103.84 (10)C5—C4—C6119.4 (2)
N1i—Ni1—O293.85 (7)C3—C4—C6123.7 (2)
N1—Ni1—O292.94 (7)C12—C8—C9117.2 (2)
N2—Ni1—O2160.60 (7)C12—C8—C7119.5 (2)
N2i—Ni1—O294.70 (6)C9—C8—C7123.3 (2)
N1i—Ni1—O2i92.94 (7)N2—C12—C8123.7 (2)
N1—Ni1—O2i93.85 (7)N2—C12—C5116.71 (19)
N2—Ni1—O2i94.70 (6)C8—C12—C5119.6 (2)
N2i—Ni1—O2i160.60 (7)C7—C6—C4120.7 (2)
O2—Ni1—O2i67.58 (8)C7—C6—H6119.7
N1i—Ni1—S194.09 (5)C4—C6—H6119.7
N1—Ni1—S194.09 (5)N1—C1—C2122.0 (2)
N2—Ni1—S1128.08 (5)N1—C1—H1119.0
N2i—Ni1—S1128.08 (5)C2—C1—H1119.0
O2—Ni1—S133.79 (4)C3—C2—C1119.9 (2)
O2i—Ni1—S133.79 (4)C3—C2—H2120.1
O1i—S1—O1110.66 (15)C1—C2—H2120.1
O1i—S1—O2i110.65 (10)C2—C3—C4119.9 (2)
O1—S1—O2i110.59 (10)C2—C3—H3120.0
O1i—S1—O2110.59 (10)C4—C3—H3120.0
O1—S1—O2110.65 (10)C9—C10—C11120.3 (2)
O2i—S1—O2103.50 (13)C9—C10—H10119.9
O1i—S1—Ni1124.67 (8)C11—C10—H10119.9
O1—S1—Ni1124.67 (8)N2—C11—C10122.8 (2)
O2i—S1—Ni151.75 (6)N2—C11—H11118.6
O2—S1—Ni151.75 (6)C10—C11—H11118.6
S1—O2—Ni194.46 (7)O3—C13—O3'35.7 (4)
C1—N1—C5118.22 (19)O3—C13—C13i126.2 (4)
C1—N1—Ni1128.76 (16)O3'—C13—C13i121.0 (4)
C5—N1—Ni1113.02 (13)O3—C13—H13A105.8
C11—N2—C12117.1 (2)O3'—C13—H13A74.5
C11—N2—Ni1129.66 (16)C13i—C13—H13A105.8
C12—N2—Ni1112.83 (14)O3—C13—H13B105.8
N1—C5—C4123.10 (19)O3'—C13—H13B131.5
N1—C5—C12117.27 (18)C13i—C13—H13B105.8
C4—C5—C12119.6 (2)H13A—C13—H13B106.2
C6—C7—C8121.2 (2)C13—O3—H3A109.5
C6—C7—H7119.4C13—O3'—H3'109.5
N1i—Ni1—S1—O1i0.87 (10)O2i—Ni1—N2—C1182.5 (2)
N1—Ni1—S1—O1i179.13 (10)S1—Ni1—N2—C1188.3 (2)
N2—Ni1—S1—O1i100.39 (11)N1i—Ni1—N2—C12177.26 (15)
N2i—Ni1—S1—O1i79.61 (11)N1—Ni1—N2—C123.72 (14)
O2—Ni1—S1—O1i89.95 (12)N2i—Ni1—N2—C1296.38 (15)
O2i—Ni1—S1—O1i90.05 (12)O2—Ni1—N2—C1266.1 (3)
N1i—Ni1—S1—O1179.13 (10)O2i—Ni1—N2—C1289.37 (15)
N1—Ni1—S1—O10.87 (10)S1—Ni1—N2—C1283.62 (15)
N2—Ni1—S1—O179.61 (11)C1—N1—C5—C41.6 (3)
N2i—Ni1—S1—O1100.39 (11)Ni1—N1—C5—C4178.30 (17)
O2—Ni1—S1—O190.05 (12)C1—N1—C5—C12179.8 (2)
O2i—Ni1—S1—O189.95 (12)Ni1—N1—C5—C120.3 (2)
N1i—Ni1—S1—O2i89.18 (9)N1—C5—C4—C30.8 (3)
N1—Ni1—S1—O2i90.82 (9)C12—C5—C4—C3179.4 (2)
N2—Ni1—S1—O2i10.34 (10)N1—C5—C4—C6176.7 (2)
N2i—Ni1—S1—O2i169.66 (10)C12—C5—C4—C61.9 (3)
O2—Ni1—S1—O2i180.0C10—C9—C8—C120.4 (4)
N1i—Ni1—S1—O290.82 (9)C10—C9—C8—C7180.0 (2)
N1—Ni1—S1—O289.18 (9)C6—C7—C8—C120.3 (4)
N2—Ni1—S1—O2169.66 (10)C6—C7—C8—C9179.2 (3)
N2i—Ni1—S1—O210.34 (10)C11—N2—C12—C81.3 (3)
O2i—Ni1—S1—O2180.0Ni1—N2—C12—C8174.28 (17)
O1i—S1—O2—Ni1118.53 (10)C11—N2—C12—C5177.7 (2)
O1—S1—O2—Ni1118.49 (9)Ni1—N2—C12—C54.7 (2)
O2i—S1—O2—Ni10.0C9—C8—C12—N21.2 (3)
N1i—Ni1—O2—S191.59 (8)C7—C8—C12—N2179.2 (2)
N1—Ni1—O2—S192.96 (8)C9—C8—C12—C5177.8 (2)
N2—Ni1—O2—S125.2 (2)C7—C8—C12—C51.8 (3)
N2i—Ni1—O2—S1171.85 (8)N1—C5—C12—N23.0 (3)
O2i—Ni1—O2—S10.0C4—C5—C12—N2178.32 (19)
N1i—Ni1—N1—C1126.0 (2)N1—C5—C12—C8176.05 (19)
N2—Ni1—N1—C1178.0 (2)C4—C5—C12—C82.6 (3)
N2i—Ni1—N1—C174.8 (2)C8—C7—C6—C40.4 (4)
O2—Ni1—N1—C120.2 (2)C5—C4—C6—C70.4 (4)
O2i—Ni1—N1—C187.9 (2)C3—C4—C6—C7177.7 (3)
S1—Ni1—N1—C154.0 (2)C5—N1—C1—C20.6 (4)
N1i—Ni1—N1—C554.20 (14)Ni1—N1—C1—C2179.27 (19)
N2—Ni1—N1—C52.17 (14)N1—C1—C2—C31.2 (4)
N2i—Ni1—N1—C5105.39 (15)C1—C2—C3—C41.9 (4)
O2—Ni1—N1—C5159.64 (15)C5—C4—C3—C21.0 (4)
O2i—Ni1—N1—C591.93 (15)C6—C4—C3—C2178.3 (3)
S1—Ni1—N1—C5125.80 (14)C8—C9—C10—C110.3 (4)
N1i—Ni1—N2—C1110.8 (2)C12—N2—C11—C100.5 (4)
N1—Ni1—N2—C11175.6 (2)Ni1—N2—C11—C10172.17 (19)
N2i—Ni1—N2—C1191.7 (2)C9—C10—C11—N20.2 (4)
O2—Ni1—N2—C11105.8 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.822.152.659 (7)121
O3—H3···O10.822.472.763 (5)102

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C12H8N2)2]·C2H6O2
Mr577.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.4551 (9), 11.8839 (5), 12.7526 (6)
β (°) 118.991 (6)
V3)2446.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.36 × 0.33 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2009)
Tmin, Tmax0.731, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
11586, 3010, 2467
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.08
No. of reflections3010
No. of parameters183
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.52

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.822.152.659 (7)120.6
O3'—H3'···O10.822.472.763 (5)102.3
 

References

First citationChen, J.-M., Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1724–m1726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). ABSPACK and CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2005). Acta Cryst. E61, m1738–m1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, X.-Y., Qiu, Y.-C., Sun, F. & Yue, S.-T. (2007). Acta Cryst. E63, m2515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006a). Acta Cryst. E62, m2688–m2689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006b). Acta Cryst. E62, m2725–m2726.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds