metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) bis­­{[N-(4-meth­­oxy-2-oxido­benzyl­­idene)glycylglycinato]nickel(II)} hexa­hydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 5 June 2009; accepted 8 July 2009; online 18 July 2009)

In the title compound, [Co(H2O)6][Ni(C12H11N2O5)]2·6H2O, the NiII atom has a nearly square-planar coordination with two N and two O atoms of the N-(4-meth­oxy-2-oxidobenzyl­idene)glycylglycinate Schiff base ligand (L3−). The CoII atom sits on an inversion center and is coordinated to six aqua ligands in a slightly distorted octa­hedral geometry. The [Co(H2O)6]2+ cations and [NiL] anions form columns along the a axis by O—H⋯O hydrogen bonds. Additional hydrogen bonds between the uncoordinated and coordinated water molecules help to consolidate the crystal packing.

Related literature

For the structures of the copper(II) analogues, see: Liu et al. (2006[Liu, W. L., Liu, X. F., Lu, Y. & Hu, X. Y. (2006). J. Coord. Chem. pp. 721-728.]); Zou et al. (2004[Zou, Y., Liu, W. L., Lu, C. S., Wen, L. L. & Meng, Q. J. (2004). Inorg. Chem. Commun. pp. 985-987.]). For the magnetic properties of copper(II) heteronuclear complexes, see: Liu et al. (2004[Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946-2947.]); Zou et al. (2003[Zou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946-2947.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6][Ni(C12H11N2O5)]2·6H2O

  • Mr = 919.00

  • Triclinic, [P \overline 1]

  • a = 7.9052 (8) Å

  • b = 10.7595 (10) Å

  • c = 11.5032 (11) Å

  • α = 76.325 (1)°

  • β = 76.654 (1)°

  • γ = 80.334 (1)°

  • V = 918.34 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.672

  • 7254 measured reflections

  • 3572 independent reflections

  • 3300 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 3572 reflections

  • 272 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O9 0.831 (16) 1.973 (17) 2.796 (2) 171 (3)
O6—H6B⋯O2 0.848 (16) 1.964 (16) 2.809 (2) 175 (3)
O7—H7A⋯O3 0.854 (16) 1.890 (17) 2.721 (2) 164 (3)
O7—H7B⋯O4i 0.844 (16) 2.007 (17) 2.835 (2) 167 (3)
O8—H8C⋯O10ii 0.827 (16) 1.914 (17) 2.733 (2) 170 (3)
O8—H8D⋯O11ii 0.844 (16) 1.927 (17) 2.756 (2) 167 (3)
O9—H9A⋯O11iii 0.850 (17) 2.030 (17) 2.871 (2) 170 (3)
O9—H9B⋯O4iv 0.824 (17) 2.121 (18) 2.941 (2) 173 (3)
O10—H10C⋯O4v 0.822 (16) 1.963 (17) 2.775 (2) 169 (3)
O10—H10D⋯O3vi 0.831 (17) 2.025 (17) 2.840 (2) 167 (3)
O11—H11B⋯O1vii 0.850 (17) 1.976 (17) 2.817 (2) 170 (3)
O11—H11A⋯O10viii 0.841 (17) 1.999 (18) 2.778 (2) 154 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) x, y, z-1; (v) -x, -y+1, -z+2; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1; (viii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have reported a series of heteronuclear complexes of Schiff bases synthesized from small peptides. Recently, we reported the copper(II) heteronuclear complexes of Schiff base ligands resulting from the condensation of simple peptides with salicylaldehyde (Liu et al., 2006; Zou et al., 2004) and magnetic properties (Liu et al., 2004; Zou et al., 2003). Hydrogen bonds play an important role in these complexes. Now we report the synthesis and structure of Ni(II)—Co(II) Schiff base complex derived from glycylglycine and 4-methoxy-salicylaldehyde. The heteronuclear complex crystallizes in the triclinic space group P1. The asymmetric unit consists of one [NiL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), half a Co(H2O)62+ cation [Co(1), O(6), O(7), O(8)] and three uncoordinated water molecules [O(9), O(10), O(11)] (Fig. 1). [NiL]- has an approximate square-planar geometry. The deprotonated Schiff base is a triple negatively charged tetradentate ONNO ligand, coordinating to the Ni(II) center by one phenolate O atom [O(1)], one imine N atom [N(1)], one deprotonated amide N atom [N(2)] and one carboxylate O atom [O(3)]. The benzene ring [C(1)–C(6)] and the O(1), C(1), C(6), C(7), N(1), Ni(1) chelate ring are almost coplanar with a dihedral angle of 0.55 (7)°, suggesting a large π-electron delocalization. The Cobalt(II) atom lies on an inversion center and the coordination by six aqua ligands is slightly distorted octahedral. The six Co—O bonds in the structure are in the range of 2.0518 (13) - 2.0711 (14) Å. O—H···O hydrogen bonds (Table 1) play an important role in the stabilization of the crystal structure. The anions and cations form hydrogen bonded columns along the a-axis (Fig. 2). These are well segregated from each other.

Related literature top

For the structures of the copper(II) analogues, see: Liu et al. (2006); Zou et al. (2004). For the magnetic properties of copper(II) heteronuclear complexes, see: Liu et al. (2004); Zou et al. (2003).

Experimental top

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Ni(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to pH 9–11 by 5 mol/L NaOH solution. After stirring at room temperature for 1 h, CoCl2.6H2O (2.5 mmol) was added. A yellow precipitate formed immediately, and was stirred for another 30 min and then filtere. The precipitate was recrystallized from water. Yellow crystals suitable for X-ray diffraction were obtained after one week. (yield 30% based on Ni(ClO4)2.6H2O).

Refinement top

The water H atoms were located in a difference Fourier map with a distance restraint of O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). The refinement of water H atoms were performed using 18 least-squares restraints by applying DFIX instructions of SHELXTL. All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5eq(C) of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by the symmetry operation (-x + 1, -y + 2, -z + 1).
[Figure 2] Fig. 2. Crystal packing viewed down the a-axis, showing separated stacked columns connected by O—H···O hydrogen bonds (dashed lines).
Hexaaquacobalt(II) bis{[N-(4-methoxy-2-oxidobenzylidene)glycylglycinato]nickel(II)} hexahydrate top
Crystal data top
[Co(H2O)6][Ni(C12H11N2O5)]2·6H2OZ = 1
Mr = 919.00F(000) = 477
Triclinic, P1Dx = 1.662 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9052 (8) ÅCell parameters from 6194 reflections
b = 10.7595 (10) Åθ = 2.4–28.4°
c = 11.5032 (11) ŵ = 1.55 mm1
α = 76.325 (1)°T = 296 K
β = 76.654 (1)°Block, yellow
γ = 80.334 (1)°0.30 × 0.30 × 0.25 mm
V = 918.34 (15) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3572 independent reflections
Radiation source: sealed tube3300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.633, Tmax = 0.672k = 1313
7254 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0666P]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.67 e Å3
18 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Co(H2O)6][Ni(C12H11N2O5)]2·6H2Oγ = 80.334 (1)°
Mr = 919.00V = 918.34 (15) Å3
Triclinic, P1Z = 1
a = 7.9052 (8) ÅMo Kα radiation
b = 10.7595 (10) ŵ = 1.55 mm1
c = 11.5032 (11) ÅT = 296 K
α = 76.325 (1)°0.30 × 0.30 × 0.25 mm
β = 76.654 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3572 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3300 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.672Rint = 0.073
7254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03518 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.67 e Å3
3572 reflectionsΔρmin = 0.88 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.53859 (3)0.70463 (2)0.993860 (18)0.02321 (10)
Co10.50001.00000.50000.02262 (11)
C10.7940 (2)0.51644 (17)0.89989 (17)0.0253 (4)
C20.9034 (2)0.46971 (18)0.79967 (18)0.0292 (4)
H20.90180.51640.72070.035*
C31.0127 (2)0.35529 (19)0.81779 (19)0.0302 (4)
C41.0201 (3)0.28302 (19)0.9361 (2)0.0349 (4)
H41.09620.20730.94770.042*
C50.9134 (3)0.32634 (18)1.03332 (19)0.0329 (4)
H50.91680.27801.11150.039*
C60.7977 (2)0.44218 (17)1.01975 (17)0.0273 (4)
C70.6938 (2)0.48078 (18)1.12730 (18)0.0295 (4)
H70.70510.42691.20200.035*
C80.4866 (2)0.6148 (2)1.24644 (17)0.0337 (4)
H8A0.56690.62231.29600.040*
H8B0.41620.54641.29080.040*
C90.3700 (2)0.74026 (19)1.22086 (16)0.0268 (4)
C100.2913 (2)0.90964 (18)1.05217 (17)0.0290 (4)
H10A0.32370.98171.07600.035*
H10B0.16640.90681.08110.035*
C110.3377 (2)0.92460 (18)0.91472 (17)0.0282 (4)
C121.1187 (3)0.3666 (2)0.6024 (2)0.0459 (5)
H12A1.00290.37200.58750.069*
H12B1.20000.31870.54830.069*
H12C1.15110.45180.58840.069*
N10.58553 (19)0.58460 (15)1.12880 (14)0.0268 (3)
N20.3876 (2)0.79006 (16)1.10386 (14)0.0273 (3)
O10.69326 (16)0.62706 (13)0.87706 (12)0.028
O20.45819 (18)0.84079 (13)0.87239 (11)0.0307 (3)
O30.26077 (19)1.01400 (14)0.84986 (12)0.0393 (3)
O40.27210 (18)0.78848 (15)1.30738 (12)0.0342 (3)
O51.12210 (19)0.30305 (15)0.72600 (14)0.0408 (3)
O60.4645 (2)0.83132 (15)0.62941 (13)0.0392 (3)
H6A0.387 (3)0.794 (3)0.618 (2)0.059*
H6B0.457 (4)0.831 (3)0.7041 (17)0.059*
O70.46103 (19)1.10891 (15)0.63028 (12)0.0339 (3)
H7A0.386 (3)1.093 (3)0.6968 (19)0.051*
H7B0.551 (2)1.129 (3)0.645 (2)0.051*
O80.23876 (17)1.02599 (15)0.49286 (13)0.0361 (3)
H8C0.162 (3)1.018 (3)0.5560 (17)0.054*
H8D0.208 (3)1.089 (2)0.4394 (19)0.054*
O90.2328 (2)0.69532 (17)0.57292 (15)0.0458 (4)
H9A0.127 (3)0.722 (3)0.601 (2)0.069*
H9B0.251 (4)0.717 (3)0.4978 (15)0.069*
O100.00613 (19)0.01756 (16)0.71029 (14)0.0415 (4)
H10C0.067 (3)0.081 (2)0.699 (3)0.062*
H10D0.073 (3)0.029 (3)0.752 (3)0.062*
O110.1080 (2)0.20515 (16)0.31073 (15)0.0446 (4)
H11B0.178 (3)0.248 (3)0.254 (2)0.067*
H11A0.080 (4)0.150 (2)0.280 (3)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02687 (14)0.02163 (15)0.01832 (14)0.00209 (10)0.00428 (10)0.00239 (10)
Co10.02615 (18)0.0238 (2)0.01660 (18)0.00234 (14)0.00260 (13)0.00383 (13)
C10.0255 (8)0.0193 (8)0.0313 (9)0.0020 (6)0.0082 (7)0.0040 (7)
C20.0315 (9)0.0232 (9)0.0317 (10)0.0001 (7)0.0080 (7)0.0042 (7)
C30.0282 (8)0.0240 (9)0.0398 (11)0.0004 (7)0.0075 (8)0.0108 (8)
C40.0354 (9)0.0230 (9)0.0459 (12)0.0035 (7)0.0143 (9)0.0048 (8)
C50.0369 (9)0.0228 (10)0.0387 (10)0.0010 (8)0.0158 (8)0.0002 (8)
C60.0285 (8)0.0198 (9)0.0336 (10)0.0019 (7)0.0106 (7)0.0019 (7)
C70.0316 (8)0.0253 (9)0.0292 (9)0.0038 (7)0.0102 (7)0.0036 (7)
C80.0333 (9)0.0425 (11)0.0222 (9)0.0015 (8)0.0066 (7)0.0020 (8)
C90.0269 (8)0.0333 (10)0.0215 (8)0.0059 (7)0.0044 (7)0.0067 (7)
C100.0351 (9)0.0254 (9)0.0244 (9)0.0011 (7)0.0031 (7)0.0067 (7)
C110.0328 (9)0.0238 (9)0.0249 (9)0.0013 (7)0.0026 (7)0.0053 (7)
C120.0519 (12)0.0402 (13)0.0409 (12)0.0061 (10)0.0034 (10)0.0130 (10)
N10.0278 (7)0.0279 (8)0.0227 (7)0.0017 (6)0.0065 (6)0.0012 (6)
N20.0324 (7)0.0260 (8)0.0220 (7)0.0015 (6)0.0053 (6)0.0053 (6)
O10.0310.0230.0240.0060.0040.001
O20.0386 (7)0.0272 (7)0.0203 (6)0.0076 (5)0.0038 (5)0.0035 (5)
O30.0491 (8)0.0322 (8)0.0258 (7)0.0151 (6)0.0042 (6)0.0019 (6)
O40.0367 (7)0.0427 (8)0.0218 (7)0.0003 (6)0.0036 (5)0.0091 (6)
O50.0438 (8)0.0324 (8)0.0418 (8)0.0109 (6)0.0068 (7)0.0116 (7)
O60.0556 (9)0.0372 (8)0.0253 (7)0.0144 (7)0.0108 (6)0.0014 (6)
O70.0368 (7)0.0401 (8)0.0258 (7)0.0076 (6)0.0001 (5)0.0129 (6)
O80.0303 (7)0.0435 (9)0.0288 (7)0.0000 (6)0.0052 (5)0.0005 (6)
O90.0518 (9)0.0448 (10)0.0398 (9)0.0103 (8)0.0107 (7)0.0022 (7)
O100.0363 (7)0.0485 (10)0.0365 (8)0.0039 (7)0.0028 (6)0.0128 (7)
O110.0486 (9)0.0420 (9)0.0361 (8)0.0067 (7)0.0053 (7)0.0037 (7)
Geometric parameters (Å, º) top
Ni1—N21.8318 (15)C8—H8A0.9700
Ni1—N11.8364 (15)C8—H8B0.9700
Ni1—O11.8510 (13)C9—O41.270 (2)
Ni1—O21.9058 (13)C9—N21.310 (2)
Co1—O7i2.0518 (13)C10—N21.451 (2)
Co1—O72.0518 (13)C10—C111.514 (3)
Co1—O82.0551 (13)C10—H10A0.9700
Co1—O8i2.0551 (13)C10—H10B0.9700
Co1—O62.0711 (14)C11—O31.235 (2)
Co1—O6i2.0711 (14)C11—O21.289 (2)
C1—O11.323 (2)C12—O51.429 (3)
C1—C21.413 (3)C12—H12A0.9600
C1—C61.425 (3)C12—H12B0.9600
C2—C31.382 (3)C12—H12C0.9600
C2—H20.9300O6—H6A0.831 (16)
C3—O51.369 (2)O6—H6B0.848 (16)
C3—C41.408 (3)O7—H7A0.854 (16)
C4—C51.363 (3)O7—H7B0.844 (16)
C4—H40.9300O8—H8C0.827 (16)
C5—C61.416 (3)O8—H8D0.844 (16)
C5—H50.9300O9—H9A0.850 (17)
C6—C71.427 (3)O9—H9B0.824 (17)
C7—N11.289 (2)O10—H10C0.822 (16)
C7—H70.9300O10—H10D0.831 (17)
C8—N11.477 (2)O11—H11B0.850 (17)
C8—C91.509 (3)O11—H11A0.841 (17)
N2—Ni1—N185.19 (7)C9—C8—H8A110.0
N2—Ni1—O1176.83 (6)N1—C8—H8B110.0
N1—Ni1—O197.51 (6)C9—C8—H8B110.0
N2—Ni1—O285.41 (6)H8A—C8—H8B108.4
N1—Ni1—O2170.42 (6)O4—C9—N2126.66 (18)
O1—Ni1—O291.94 (5)O4—C9—C8121.02 (16)
O7i—Co1—O7180.000 (1)N2—C9—C8112.30 (16)
O7i—Co1—O887.11 (6)N2—C10—C11107.22 (14)
O7—Co1—O892.89 (6)N2—C10—H10A110.3
O7i—Co1—O8i92.89 (6)C11—C10—H10A110.3
O7—Co1—O8i87.11 (6)N2—C10—H10B110.3
O8—Co1—O8i180.000 (1)C11—C10—H10B110.3
O7i—Co1—O687.25 (6)H10A—C10—H10B108.5
O7—Co1—O692.75 (6)O3—C11—O2123.75 (17)
O8—Co1—O690.07 (6)O3—C11—C10119.65 (16)
O8i—Co1—O689.93 (6)O2—C11—C10116.61 (15)
O7i—Co1—O6i92.75 (6)O5—C12—H12A109.5
O7—Co1—O6i87.25 (6)O5—C12—H12B109.5
O8—Co1—O6i89.93 (6)H12A—C12—H12B109.5
O8i—Co1—O6i90.07 (6)O5—C12—H12C109.5
O6—Co1—O6i180.00 (6)H12A—C12—H12C109.5
O1—C1—C2118.00 (16)H12B—C12—H12C109.5
O1—C1—C6123.54 (17)C7—N1—C8119.95 (16)
C2—C1—C6118.46 (17)C7—N1—Ni1125.62 (13)
C3—C2—C1120.68 (18)C8—N1—Ni1114.43 (12)
C3—C2—H2119.7C9—N2—C10124.56 (16)
C1—C2—H2119.7C9—N2—Ni1119.54 (13)
O5—C3—C2124.42 (18)C10—N2—Ni1115.88 (12)
O5—C3—C4114.44 (17)C1—O1—Ni1125.20 (11)
C2—C3—C4121.15 (18)C11—O2—Ni1114.57 (11)
C5—C4—C3118.64 (18)C3—O5—C12118.60 (16)
C5—C4—H4120.7Co1—O6—H6A111 (2)
C3—C4—H4120.7Co1—O6—H6B120 (2)
C4—C5—C6122.47 (18)H6A—O6—H6B113 (2)
C4—C5—H5118.8Co1—O7—H7A121.4 (18)
C6—C5—H5118.8Co1—O7—H7B117.0 (18)
C5—C6—C1118.58 (17)H7A—O7—H7B109 (2)
C5—C6—C7118.28 (17)Co1—O8—H8C121.2 (18)
C1—C6—C7123.11 (17)Co1—O8—H8D115.3 (19)
N1—C7—C6124.99 (17)H8C—O8—H8D111 (2)
N1—C7—H7117.5H9A—O9—H9B109 (2)
C6—C7—H7117.5H10C—O10—H10D111 (2)
N1—C8—C9108.53 (15)H11B—O11—H11A107 (2)
N1—C8—H8A110.0
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.83 (2)1.97 (2)2.796 (2)171 (3)
O6—H6B···O20.85 (2)1.96 (2)2.809 (2)175 (3)
O7—H7A···O30.85 (2)1.89 (2)2.721 (2)164 (3)
O7—H7B···O4ii0.84 (2)2.01 (2)2.835 (2)167 (3)
O8—H8C···O10iii0.83 (2)1.91 (2)2.733 (2)170 (3)
O8—H8D···O11iii0.84 (2)1.93 (2)2.756 (2)167 (3)
O9—H9A···O11iv0.85 (2)2.03 (2)2.871 (2)170 (3)
O9—H9B···O4v0.82 (2)2.12 (2)2.941 (2)173 (3)
O10—H10C···O4vi0.82 (2)1.96 (2)2.775 (2)169 (3)
O10—H10D···O3vii0.83 (2)2.03 (2)2.840 (2)167 (3)
O11—H11B···O1viii0.85 (2)1.98 (2)2.817 (2)170 (3)
O11—H11A···O10ix0.84 (2)2.00 (2)2.778 (2)154 (3)
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y, z1; (vi) x, y+1, z+2; (vii) x, y1, z; (viii) x+1, y+1, z+1; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6][Ni(C12H11N2O5)]2·6H2O
Mr919.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9052 (8), 10.7595 (10), 11.5032 (11)
α, β, γ (°)76.325 (1), 76.654 (1), 80.334 (1)
V3)918.34 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.633, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
7254, 3572, 3300
Rint0.073
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections3572
No. of parameters272
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.88

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.831 (16)1.973 (17)2.796 (2)171 (3)
O6—H6B···O20.848 (16)1.964 (16)2.809 (2)175 (3)
O7—H7A···O30.854 (16)1.890 (17)2.721 (2)164 (3)
O7—H7B···O4i0.844 (16)2.007 (17)2.835 (2)167 (3)
O8—H8C···O10ii0.827 (16)1.914 (17)2.733 (2)170 (3)
O8—H8D···O11ii0.844 (16)1.927 (17)2.756 (2)167 (3)
O9—H9A···O11iii0.850 (17)2.030 (17)2.871 (2)170 (3)
O9—H9B···O4iv0.824 (17)2.121 (18)2.941 (2)173 (3)
O10—H10C···O4v0.822 (16)1.963 (17)2.775 (2)169 (3)
O10—H10D···O3vi0.831 (17)2.025 (17)2.840 (2)167 (3)
O11—H11B···O1vii0.850 (17)1.976 (17)2.817 (2)170 (3)
O11—H11A···O10viii0.841 (17)1.999 (18)2.778 (2)154 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z1; (v) x, y+1, z+2; (vi) x, y1, z; (vii) x+1, y+1, z+1; (viii) x, y, z+1.
 

Acknowledgements

This work was supported by SRF for ROCS, SEM and Yangzhou University.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationLiu, W. L., Liu, X. F., Lu, Y. & Hu, X. Y. (2006). J. Coord. Chem. pp. 721–728.  Web of Science CSD CrossRef Google Scholar
First citationLiu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946–2947.  CSD CrossRef Google Scholar
First citationZou, Y., Liu, W. L., Lu, C. S., Wen, L. L. & Meng, Q. J. (2004). Inorg. Chem. Commun. pp. 985–987.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds