organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-hydr­­oxy-5-oxo-4-phenyl-2,3,4,5-tetra­hydro­pyrano[3,2-c]chromene-2-carboxyl­ate

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China
*Correspondence e-mail: yifengwang108@gmail.com

(Received 9 July 2009; accepted 17 July 2009; online 25 July 2009)

The main structural unit of the title compoud, C21H18O6, is a fused three-ring group consisting of coumarin and tetra­hydro­pyrane ring systems. Two C atoms of the tetra­hydro­pyran ring are displaced by 0.295 (3) and −0.360 (2) Å from the mean plane of coumarin ring. The dihedral angle between the phenyl and coumarin rings is 73.94 (3)°. Inter­molecular O—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For the synthesis of (E)-ethyl 2-oxo-4-phenyl­but-3-enoate, see: Vaijayanthi & Chadha (2007[Vaijayanthi, T. & Chadha, A. (2007). Tetrahedron Asymmetry, 18, 1077-1084.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O6

  • Mr = 366.37

  • Monoclinic, P 21 /n

  • a = 5.4988 (2) Å

  • b = 14.9975 (5) Å

  • c = 21.342 (1) Å

  • β = 98.5487 (13)°

  • V = 1740.48 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2005[Higashi, T. (2005). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.954, Tmax = 0.986

  • 16523 measured reflections

  • 3422 independent reflections

  • 2568 reflections with F2 > 2σ(F2)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.080

  • S = 1.00

  • 3422 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O2i 0.82 2.30 2.9198 (15) 132
O1—H101⋯O5 0.82 2.17 2.6628 (17) 119
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Coumarin derivatives are widely distributed in nature and are used as versatile intermediates in organic and natural product synthesis. Moreover, this class of compound possess a wide range of biological activities, including anticoagulant and HIV protease inhibition properties. The title compound, which is readily synthesized from commercially available 4-hydroxycoumarin and (E)-ethyl 2-oxo- 4-phenylbut-3-enoate, can act as an intermediate in organic and natural product synthesis. In this article, the crystal structure of the title compound, ethyl 2-hydroxy-5-oxo-4-phenyl-2,3,4,5-tetrahydropyrano[3,2- c]chromene-2-carboxylate was described (Fig. 1). The main structural unit is a three-ring group consisting of a coumarin ring and a tetrahydropyrane. Two carbon atoms of the tetrahydropyrane structure are not coplanar with the coumarin backbone: one carbon atom lies 0.295 (3) Å from the mean plane of coumarin ring and the other lies 0.360 (2) Å from the plane in opposite direction. The dihedral angle between benzene and coumarin rings is 73.94 (3) °. The distance from O1 of the hydroxyl group to coumarin plane is 1.664 (2) Å. In addition, intermolecular O—H···O hydrogen bonds in the crystal are observed (Fig. 2).

Related literature top

For the synthesis of (E)-ethyl 2-oxo-4-phenylbut-3-enoate, see: Vaijayanthi & Chadha (2007).

Experimental top

The title compound was synthesized by treating (E)-ethyl 2-oxo-4-phenylbut-3-enoate (2.04 g,10 mmol) with 4-hydroxycoumarin (1.62 g, 10 mmol) in the presence of triethylamine as a catalyst in dichloromethane (30 ml) under stirring at room temperature for 24 h. The solvent was distilled under vacuum, and the residue was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound (3.3 g, 90%). The compound (E)-ethyl 2-oxo-4-phenylbut-3-enoate was obtained from commercially available benzaldehyde by condensation with pyruvic acid and subsequent esterification with ethanol. Suitable crystals of the title compound were obtained by slow evaporation of dichloromethane solution at room temperature.

Refinement top

H atoms were placed in calculated position with C—H=0.98 Å(sp), C—H=0.97 Å(sp2), C—H=0.96 Å(sp3), C—H=0.93 Å(aromatic). All H atoms included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound showing H-bond interactions. Symmetry code (i) is 0.5-x, 0.5+y, 0.5-z.
Ethyl 2-hydroxy-5-oxo-4-phenyl-2,3,4,5- tetrahydropyrano[3,2-c]chromene-2-carboxylate top
Crystal data top
C21H18O6F(000) = 768.00
Mr = 366.37Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 11365 reflections
a = 5.4988 (2) Åθ = 3.2–27.4°
b = 14.9975 (5) ŵ = 0.10 mm1
c = 21.342 (1) ÅT = 296 K
β = 98.5487 (13)°Platelet, colorless
V = 1740.48 (12) Å30.41 × 0.39 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2568 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.026
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 2005)
h = 77
Tmin = 0.954, Tmax = 0.986k = 1916
16523 measured reflectionsl = 2727
3422 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.013P)2 + P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.21 e Å3
3422 reflectionsΔρmin = 0.19 e Å3
246 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0057 (4)
Crystal data top
C21H18O6V = 1740.48 (12) Å3
Mr = 366.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4988 (2) ŵ = 0.10 mm1
b = 14.9975 (5) ÅT = 296 K
c = 21.342 (1) Å0.41 × 0.39 × 0.14 mm
β = 98.5487 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2005)
2568 reflections with F2 > 2σ(F2)
Tmin = 0.954, Tmax = 0.986Rint = 0.026
16523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3422 reflectionsΔρmin = 0.19 e Å3
246 parameters
Special details top

Geometry. The tetrahydropyrane structure in the crystal displays an envelope configuration, with atom C2 at the flap position, displaced by 0.603 (2) Å from the mean plane of the other atoms.

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3270 (2)0.47260 (6)0.24846 (5)0.0400 (2)
O20.3755 (2)0.12605 (6)0.19275 (5)0.0442 (3)
O30.2981 (2)0.39483 (6)0.15453 (5)0.0369 (2)
O40.7169 (2)0.14798 (8)0.25944 (6)0.0548 (3)
O50.2708 (2)0.60253 (9)0.16249 (6)0.0562 (3)
O60.5597 (2)0.54329 (8)0.11100 (6)0.0483 (3)
C10.4400 (2)0.46019 (10)0.19571 (6)0.0320 (3)
C20.7020 (2)0.42864 (10)0.21432 (8)0.0344 (3)
C30.7153 (2)0.33839 (10)0.24884 (6)0.0326 (3)
C40.5223 (2)0.27767 (10)0.21402 (6)0.0322 (3)
C50.5514 (3)0.18281 (11)0.22491 (8)0.0383 (3)
C60.1792 (3)0.15776 (11)0.15092 (6)0.0390 (3)
C70.0084 (3)0.09575 (12)0.12389 (8)0.0504 (4)
C80.1910 (3)0.12559 (12)0.08244 (9)0.0548 (5)
C90.2214 (3)0.21535 (12)0.06798 (8)0.0490 (4)
C100.0505 (2)0.27653 (11)0.09506 (6)0.0394 (3)
C110.1532 (2)0.24823 (10)0.13760 (6)0.0335 (3)
C120.3355 (2)0.30795 (10)0.17075 (6)0.0312 (3)
C130.7091 (2)0.34673 (10)0.31968 (6)0.0334 (3)
C140.9040 (3)0.38961 (12)0.35684 (8)0.0429 (4)
C150.9097 (3)0.39905 (12)0.42137 (9)0.0526 (4)
C160.7198 (3)0.36628 (13)0.45022 (9)0.0554 (5)
C170.5260 (3)0.32322 (13)0.41407 (9)0.0526 (4)
C180.5209 (3)0.31326 (12)0.34917 (8)0.0427 (4)
C190.4127 (2)0.54477 (11)0.15467 (8)0.0368 (3)
C200.5607 (4)0.62325 (13)0.07224 (10)0.0632 (5)
C210.7368 (4)0.60702 (17)0.02723 (11)0.0822 (7)
H30.87500.31220.24430.039*
H70.02790.03540.13350.060*
H80.30730.08480.06380.066*
H90.35740.23430.04000.059*
H100.07060.33670.08510.047*
H110.79100.47270.24210.041*
H120.77810.42260.17630.041*
H141.03250.41230.33780.051*
H151.04200.42760.44550.063*
H160.72230.37310.49360.066*
H170.39790.30070.43330.063*
H180.38980.28380.32530.051*
H1010.23500.51590.24170.048*
H2010.61270.67430.09880.076*
H2020.39760.63410.04920.076*
H2110.89500.59240.05040.099*
H2120.75040.65970.00250.099*
H2130.67910.55850.00030.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0426 (6)0.0374 (6)0.0417 (6)0.0076 (5)0.0117 (5)0.0020 (5)
O20.0565 (7)0.0292 (5)0.0443 (6)0.0051 (5)0.0012 (5)0.0017 (5)
O30.0413 (6)0.0266 (5)0.0394 (6)0.0019 (4)0.0047 (4)0.0001 (4)
O40.0603 (8)0.0355 (6)0.0628 (8)0.0082 (6)0.0107 (6)0.0050 (6)
O50.0556 (7)0.0415 (7)0.0723 (9)0.0130 (6)0.0120 (6)0.0145 (6)
O60.0652 (8)0.0371 (6)0.0445 (7)0.0020 (5)0.0149 (6)0.0096 (5)
C10.0357 (8)0.0282 (7)0.0322 (8)0.0027 (6)0.0054 (6)0.0020 (6)
C20.0326 (7)0.0315 (8)0.0393 (8)0.0032 (6)0.0056 (6)0.0008 (6)
C30.0293 (7)0.0318 (8)0.0364 (8)0.0025 (6)0.0041 (6)0.0009 (6)
C40.0358 (8)0.0281 (7)0.0329 (8)0.0006 (6)0.0059 (6)0.0011 (6)
C50.0457 (9)0.0324 (8)0.0365 (8)0.0014 (7)0.0053 (7)0.0002 (7)
C60.0492 (9)0.0373 (9)0.0303 (8)0.0064 (7)0.0049 (7)0.0005 (6)
C70.0719 (12)0.0364 (9)0.0404 (10)0.0173 (9)0.0005 (9)0.0006 (7)
C80.0683 (12)0.0529 (11)0.0398 (10)0.0267 (10)0.0031 (9)0.0026 (8)
C90.0507 (10)0.0559 (11)0.0376 (9)0.0111 (9)0.0025 (7)0.0013 (8)
C100.0457 (9)0.0386 (9)0.0333 (8)0.0048 (7)0.0040 (7)0.0014 (7)
C110.0401 (8)0.0331 (8)0.0276 (7)0.0054 (7)0.0064 (6)0.0032 (6)
C120.0370 (8)0.0273 (7)0.0304 (7)0.0023 (6)0.0089 (6)0.0010 (6)
C130.0335 (7)0.0303 (8)0.0355 (8)0.0065 (6)0.0016 (6)0.0027 (6)
C140.0405 (9)0.0452 (10)0.0408 (9)0.0015 (7)0.0014 (7)0.0003 (7)
C150.0515 (10)0.0561 (11)0.0445 (10)0.0083 (9)0.0117 (8)0.0060 (8)
C160.0647 (12)0.0645 (12)0.0351 (9)0.0220 (10)0.0014 (9)0.0008 (9)
C170.0525 (10)0.0642 (12)0.0433 (10)0.0116 (9)0.0146 (8)0.0081 (9)
C180.0394 (9)0.0465 (10)0.0416 (9)0.0015 (7)0.0042 (7)0.0010 (7)
C190.0398 (8)0.0317 (8)0.0372 (9)0.0057 (7)0.0005 (7)0.0013 (6)
C200.0818 (14)0.0490 (11)0.0601 (13)0.0083 (10)0.0147 (11)0.0222 (9)
C210.1051 (19)0.0793 (16)0.0674 (15)0.0195 (14)0.0301 (14)0.0151 (13)
Geometric parameters (Å, º) top
O1—C11.3772 (19)C13—C181.383 (2)
O2—C51.3906 (19)C14—C151.380 (2)
O2—C61.3791 (18)C15—C161.379 (2)
O3—C11.4623 (17)C16—C171.379 (2)
O3—C121.3560 (18)C17—C181.389 (2)
O4—C51.2019 (19)C20—C211.482 (3)
O5—C191.194 (2)O1—H1010.822
O6—C191.321 (2)C2—H110.970
O6—C201.457 (2)C2—H120.970
C1—C21.512 (2)C3—H30.980
C1—C191.536 (2)C7—H70.930
C2—C31.538 (2)C8—H80.930
C3—C41.508 (2)C9—H90.930
C3—C131.522 (2)C10—H100.930
C4—C51.447 (2)C14—H140.930
C4—C121.353 (2)C15—H150.930
C6—C71.385 (2)C16—H160.930
C6—C111.389 (2)C17—H170.930
C7—C81.377 (2)C18—H180.930
C8—C91.386 (2)C20—H2010.970
C9—C101.378 (2)C20—H2020.970
C10—C111.399 (2)C21—H2110.960
C11—C121.448 (2)C21—H2120.960
C13—C141.392 (2)C21—H2130.960
C5—O2—C6121.90 (12)O5—C19—C1122.00 (16)
C1—O3—C12116.34 (10)O6—C19—C1111.72 (13)
C19—O6—C20116.16 (14)O6—C20—C21106.91 (17)
O1—C1—O3108.45 (12)C1—O1—H101107.7
O1—C1—C2110.84 (12)C1—C2—H11108.8
O1—C1—C19109.68 (12)C1—C2—H12108.8
O3—C1—C2110.52 (12)C3—C2—H11108.8
O3—C1—C19102.28 (11)C3—C2—H12108.8
C2—C1—C19114.63 (13)H11—C2—H12109.5
C1—C2—C3112.15 (12)C2—C3—H3106.5
C2—C3—C4108.40 (11)C4—C3—H3106.5
C2—C3—C13113.39 (12)C13—C3—H3106.5
C4—C3—C13114.91 (12)C6—C7—H7120.8
C3—C4—C5117.50 (12)C8—C7—H7120.8
C3—C4—C12122.74 (13)C7—C8—H8119.4
C5—C4—C12119.62 (13)C9—C8—H8119.4
O2—C5—O4116.37 (14)C8—C9—H9119.9
O2—C5—C4118.06 (13)C10—C9—H9119.9
O4—C5—C4125.57 (14)C9—C10—H10120.0
O2—C6—C7117.07 (14)C11—C10—H10120.0
O2—C6—C11121.07 (13)C13—C14—H14119.4
C7—C6—C11121.85 (14)C15—C14—H14119.4
C6—C7—C8118.37 (16)C14—C15—H15119.9
C7—C8—C9121.12 (17)C16—C15—H15119.9
C8—C9—C10120.10 (15)C15—C16—H16120.3
C9—C10—C11120.05 (15)C17—C16—H16120.3
C6—C11—C10118.50 (13)C16—C17—H17119.8
C6—C11—C12117.48 (12)C18—C17—H17119.8
C10—C11—C12123.97 (13)C13—C18—H18119.7
O3—C12—C4124.57 (13)C17—C18—H18119.7
O3—C12—C11113.70 (12)O6—C20—H201110.1
C4—C12—C11121.72 (13)O6—C20—H202110.1
C3—C13—C14118.36 (14)C21—C20—H201110.1
C3—C13—C18123.41 (13)C21—C20—H202110.1
C14—C13—C18118.23 (14)H201—C20—H202109.5
C13—C14—C15121.16 (16)C20—C21—H211109.5
C14—C15—C16120.15 (16)C20—C21—H212109.5
C15—C16—C17119.36 (17)C20—C21—H213109.5
C16—C17—C18120.49 (18)H211—C21—H212109.5
C13—C18—C17120.61 (15)H211—C21—H213109.5
O5—C19—O6126.28 (16)H212—C21—H213109.5
C5—O2—C6—C7176.87 (15)C3—C4—C5—O2179.57 (14)
C5—O2—C6—C112.1 (2)C3—C4—C5—O40.0 (2)
C6—O2—C5—O4178.82 (15)C3—C4—C12—O31.0 (2)
C6—O2—C5—C40.8 (2)C3—C4—C12—C11179.57 (14)
C1—O3—C12—C412.7 (2)C5—C4—C12—O3176.60 (15)
C1—O3—C12—C11166.76 (13)C5—C4—C12—C114.0 (2)
C12—O3—C1—O179.87 (15)C12—C4—C5—O23.8 (2)
C12—O3—C1—C241.82 (17)C12—C4—C5—O4175.79 (17)
C12—O3—C1—C19164.28 (13)O2—C6—C7—C8179.32 (16)
C19—O6—C20—C21179.82 (15)O2—C6—C11—C10179.62 (14)
C20—O6—C19—O55.1 (2)O2—C6—C11—C121.9 (2)
C20—O6—C19—C1175.90 (13)C7—C6—C11—C100.7 (2)
O1—C1—C2—C361.60 (16)C7—C6—C11—C12176.99 (16)
O1—C1—C19—O514.1 (2)C11—C6—C7—C80.4 (2)
O1—C1—C19—O6166.88 (12)C6—C7—C8—C90.1 (2)
O3—C1—C2—C358.67 (16)C7—C8—C9—C100.1 (2)
O3—C1—C19—O5100.86 (17)C8—C9—C10—C110.5 (2)
O3—C1—C19—O678.16 (14)C9—C10—C11—C60.8 (2)
C2—C1—C19—O5139.51 (16)C9—C10—C11—C12176.80 (16)
C2—C1—C19—O641.46 (18)C6—C11—C12—O3179.34 (14)
C19—C1—C2—C3173.59 (12)C6—C11—C12—C41.2 (2)
C1—C2—C3—C443.95 (17)C10—C11—C12—O33.1 (2)
C1—C2—C3—C1384.91 (15)C10—C11—C12—C4176.41 (16)
C2—C3—C4—C5160.47 (14)C3—C13—C14—C15179.77 (15)
C2—C3—C4—C1215.2 (2)C3—C13—C18—C17179.88 (15)
C2—C3—C13—C1464.76 (18)C14—C13—C18—C170.7 (2)
C2—C3—C13—C18115.79 (16)C18—C13—C14—C150.3 (2)
C4—C3—C13—C14169.80 (14)C13—C14—C15—C160.4 (2)
C4—C3—C13—C189.7 (2)C14—C15—C16—C170.7 (2)
C13—C3—C4—C571.53 (18)C15—C16—C17—C180.4 (3)
C13—C3—C4—C12112.80 (17)C16—C17—C18—C130.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.822.302.9198 (15)132
O1—H101···O50.822.172.6628 (17)119
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18O6
Mr366.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.4988 (2), 14.9975 (5), 21.342 (1)
β (°) 98.5487 (13)
V3)1740.48 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.39 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2005)
Tmin, Tmax0.954, 0.986
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
16523, 3422, 2568
Rint0.026
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.00
No. of reflections3422
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.8222.3042.9198 (15)132.2
O1—H101···O50.8222.1652.6628 (17)119.0
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (2005). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaijayanthi, T. & Chadha, A. (2007). Tetrahedron Asymmetry, 18, 1077–1084.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds