organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl)[6-(2-fur­yl)-7-nitro-2,3,4,6,7,8-hexa­hydro-1H-pyrido[1,2-a]pyrimidin-9-yl]methanone

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
*Correspondence e-mail: mayaqub2@yahoo.com

(Received 27 April 2009; accepted 7 July 2009; online 15 July 2009)

In the title compound, C19H18FN3O4, the fused pyridine and pyrimidine rings adopt half-chair conformations. The structure displays intra­molecular N—H⋯O and inter­molecular N—H⋯F hydrogen bonding.

Related literature

For the use of cyclic 1,1-enediamines in the synthesis of a wide variety of fused heterocycles, see: Huang & Wang, (1994[Huang, Z.-T. & Wang, M.-X. (1994). Heterocycles, 37, 1233-1262.]); Yu et al. (2006[Yu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett. pp. 1835-1840.]); Yaqub et al. (2008[Yaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357-1360.]). For related structures, see: Yu et al. (2007[Yu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18FN3O4

  • Mr = 371.36

  • Orthorhombic, P n a 21

  • a = 15.375 (3) Å

  • b = 7.0706 (14) Å

  • c = 15.255 (3) Å

  • V = 1658.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.38 × 0.25 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.979

  • 3533 measured reflections

  • 1943 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.066

  • S = 1.01

  • 1943 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 1.86 2.579 (3) 138
N1—H1A⋯F1i 0.88 2.60 3.130 (3) 120
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyclic 1,1-enediamines known as heterocyclic ketene aminals (HKAs) have been exploited in different synthetic methodologies to build a wide variety of fused heterocycles (Huang & Wang, 1994; Yu, et al., 2006; Yaqub, et al., 2008). The title compound, (I), was prepared by treating nitro derivative of Baylis-Hillman acetates with heterocyclic ketene aminals. The structure of (I) is presented in this article.

The stucture of the title compound, (I), is shown in Fig. 1. The fused pyridyl (N2/C4—C8) and pyrimidyl (N1/N2/C1—C3/C8) rings adopt half-chair conformations, C5 and N2 atoms lie 0.596 (4) and 0.640 (5) Å, respectively, out of the planes formed by the remaining ring atoms. The structure displays an intramolecular (N—H···O) and an intermolecular (N—H···F) hydrogen bonding (details are in Table 1). The molecular dimensions in (I) are in accord with a the corrsponding dimensions reported for a structure very closely related to (I) (Yu, et al., 2007).

Related literature top

For the use of cyclic 1,1-enediamines in the synthesis of a wide variety of fused heterocycles, see: Huang & Wang, (1994); Yu et al. (2006); Yaqub et al. (2008). For related structures, see: Yu et al. (2007).

Experimental top

(E)-2-Nitro-3-(2-furanyl)allyl acetate 2 (0.15 g, 0.71 mmol) and ketene aminal 2 (0.146 g, 0.71 mmol) were stirred in 20 ml of dichloromethane (DCM) at 273 K for one hour. Temperature was allowed to rise up to room temperature and stirring was further continued for 6 hrs. Solvent was evaporated and residue was passed through the column. The elution was carried out by petroleum ether: ethyl acetate (3:1) to get the title compound as a light yellow solid. The single crystals of (I) were grown in dichloromethane - petroleum ether (1:5) system at room temperature by slow evaporation. Yield: 62% (0.16 g), m.p. 417–418 K (lit. m.p. 418–419 K).

Refinement top

An absolute structure could not be established by anomalous dispersion effects because the crystal consists of light atoms only. Therefore, Friedel pairs (1590) were merged. All H atoms were positioned geometrically, with N—H = 0.88 and C—H = 0.95, 0.99 and 1.00 Å, for aromatic, methylene and methine H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
(4-Fluorophenyl)[6-(2-furyl)-7-nitro-2,3,4,6,7,8-hexahydro-1H- pyrido[1,2-a]pyrimidin-9-yl]methanone top
Crystal data top
C19H18FN3O4F(000) = 776
Mr = 371.36Dx = 1.487 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3533 reflections
a = 15.375 (3) Åθ = 2.7–27.4°
b = 7.0706 (14) ŵ = 0.11 mm1
c = 15.255 (3) ÅT = 173 K
V = 1658.3 (6) Å3Plate, yellow
Z = 40.38 × 0.25 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1943 independent reflections
Radiation source: rotating anode1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scans at fixed χ = 45°θmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.958, Tmax = 0.979k = 99
3533 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0225P)2]
where P = (Fo2 + 2Fc2)/3
1943 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C19H18FN3O4V = 1658.3 (6) Å3
Mr = 371.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.375 (3) ŵ = 0.11 mm1
b = 7.0706 (14) ÅT = 173 K
c = 15.255 (3) Å0.38 × 0.25 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1657 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.020
3533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.066H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
1943 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Flack parameter cannot be determined correctly because the crystal consists of light atoms only, and because the radiation is MoKα. In the final stage of structure refinement with SHELXL, MERG 3 card was used, i.e. Friedel pairs (1590) were merged

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.27105 (10)0.6451 (2)0.11441 (12)0.0346 (4)
O10.16942 (12)0.3771 (3)0.52236 (12)0.0270 (5)
O20.06546 (13)0.0877 (3)0.48554 (15)0.0412 (6)
O30.04035 (13)0.2693 (3)0.52399 (15)0.0336 (5)
O40.03402 (12)0.0794 (3)0.16274 (12)0.0249 (4)
N10.08544 (14)0.2010 (3)0.25757 (16)0.0216 (5)
H1A0.08960.12960.21050.026*
N20.01886 (14)0.2546 (3)0.39083 (16)0.0188 (5)
N30.01178 (15)0.1242 (3)0.49235 (15)0.0225 (5)
C10.14602 (18)0.3583 (4)0.2649 (2)0.0249 (6)
H1B0.20370.31070.28360.030*
H1C0.15280.42010.20710.030*
C20.1128 (2)0.5011 (4)0.3313 (2)0.0263 (7)
H2A0.06320.57230.30620.032*
H2B0.15950.59230.34590.032*
C30.08430 (18)0.3984 (4)0.41276 (18)0.0223 (6)
H3A0.05940.48980.45510.027*
H3B0.13520.33710.44060.027*
C40.04462 (16)0.2163 (3)0.45963 (18)0.0174 (6)
H4A0.01710.24100.51790.021*
C50.07782 (16)0.0134 (3)0.45763 (17)0.0163 (5)
H5A0.13080.00590.49560.020*
C60.10374 (16)0.0431 (3)0.36448 (17)0.0172 (6)
H6A0.15810.02350.34840.021*
H6B0.11560.18060.36300.021*
C70.03447 (17)0.0028 (4)0.29753 (17)0.0177 (5)
C80.02392 (17)0.1551 (3)0.31586 (17)0.0162 (5)
C90.12129 (16)0.3457 (3)0.44889 (18)0.0180 (5)
C100.24018 (19)0.4814 (4)0.4965 (2)0.0303 (7)
H10A0.28530.52340.53420.036*
C110.23634 (19)0.5153 (4)0.4105 (2)0.0270 (7)
H11A0.27730.58450.37680.032*
C120.15887 (17)0.4277 (4)0.37916 (19)0.0235 (6)
H12A0.13800.42730.32050.028*
C130.02627 (17)0.0996 (3)0.21865 (17)0.0173 (6)
C140.09337 (16)0.2471 (3)0.19533 (18)0.0170 (6)
C150.18225 (17)0.2120 (3)0.20063 (19)0.0208 (6)
H15A0.20180.09440.22340.025*
C160.24299 (18)0.3450 (4)0.17349 (19)0.0240 (6)
H16A0.30360.31980.17630.029*
C170.21204 (18)0.5148 (4)0.14232 (19)0.0232 (6)
C180.12529 (18)0.5575 (4)0.13609 (18)0.0236 (6)
H18A0.10650.67670.11450.028*
C190.06578 (18)0.4215 (4)0.16217 (18)0.0212 (6)
H19A0.00530.44720.15750.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0346 (10)0.0353 (9)0.0338 (10)0.0157 (8)0.0003 (9)0.0075 (8)
O10.0294 (11)0.0320 (11)0.0195 (11)0.0085 (9)0.0055 (9)0.0003 (9)
O20.0187 (11)0.0488 (14)0.0560 (16)0.0057 (10)0.0028 (11)0.0223 (12)
O30.0376 (12)0.0181 (10)0.0451 (15)0.0001 (9)0.0059 (11)0.0077 (9)
O40.0243 (11)0.0305 (10)0.0200 (10)0.0058 (9)0.0057 (9)0.0059 (9)
N10.0236 (13)0.0221 (11)0.0193 (12)0.0065 (10)0.0051 (10)0.0054 (10)
N20.0193 (11)0.0184 (10)0.0187 (11)0.0032 (10)0.0001 (10)0.0020 (9)
N30.0262 (14)0.0234 (12)0.0178 (12)0.0046 (11)0.0004 (10)0.0000 (10)
C10.0230 (14)0.0254 (14)0.0263 (15)0.0098 (13)0.0049 (13)0.0002 (13)
C20.0310 (16)0.0190 (12)0.0291 (16)0.0051 (13)0.0006 (13)0.0019 (12)
C30.0240 (15)0.0207 (13)0.0222 (15)0.0033 (12)0.0003 (12)0.0072 (12)
C40.0191 (13)0.0214 (13)0.0117 (13)0.0014 (11)0.0027 (12)0.0033 (11)
C50.0142 (12)0.0178 (12)0.0169 (13)0.0022 (11)0.0006 (11)0.0018 (11)
C60.0161 (13)0.0148 (12)0.0206 (15)0.0013 (11)0.0015 (12)0.0011 (11)
C70.0198 (13)0.0157 (12)0.0176 (14)0.0006 (12)0.0006 (11)0.0014 (10)
C80.0154 (13)0.0165 (12)0.0167 (13)0.0046 (11)0.0003 (11)0.0011 (11)
C90.0216 (13)0.0151 (12)0.0173 (13)0.0035 (11)0.0029 (12)0.0015 (11)
C100.0283 (17)0.0289 (15)0.0338 (19)0.0100 (14)0.0062 (14)0.0011 (14)
C110.0261 (17)0.0195 (13)0.0354 (19)0.0037 (13)0.0020 (14)0.0056 (13)
C120.0261 (16)0.0231 (13)0.0212 (15)0.0003 (12)0.0005 (13)0.0023 (12)
C130.0184 (13)0.0179 (13)0.0154 (13)0.0012 (11)0.0012 (11)0.0020 (11)
C140.0213 (14)0.0180 (11)0.0119 (12)0.0010 (12)0.0004 (11)0.0020 (10)
C150.0242 (14)0.0189 (13)0.0194 (14)0.0026 (12)0.0022 (13)0.0008 (12)
C160.0202 (14)0.0304 (14)0.0214 (16)0.0007 (13)0.0016 (12)0.0026 (12)
C170.0300 (16)0.0249 (13)0.0147 (13)0.0126 (12)0.0002 (12)0.0014 (11)
C180.0322 (16)0.0200 (13)0.0185 (15)0.0025 (12)0.0049 (12)0.0047 (12)
C190.0233 (15)0.0231 (13)0.0171 (14)0.0001 (12)0.0035 (12)0.0002 (12)
Geometric parameters (Å, º) top
F1—C171.361 (3)C5—C61.529 (4)
O1—C91.361 (3)C5—H5A1.0000
O1—C101.372 (3)C6—C71.511 (3)
O2—N31.220 (3)C6—H6A0.9900
O3—N31.216 (3)C6—H6B0.9900
O4—C131.268 (3)C7—C131.410 (4)
N1—C81.338 (3)C7—C81.430 (3)
N1—C11.455 (3)C9—C121.342 (4)
N1—H1A0.8800C10—C111.334 (4)
N2—C81.345 (3)C10—H10A0.9500
N2—C41.458 (3)C11—C121.425 (4)
N2—C31.469 (3)C11—H11A0.9500
N3—C51.503 (3)C12—H12A0.9500
C1—C21.518 (4)C13—C141.509 (4)
C1—H1B0.9900C14—C151.391 (3)
C1—H1C0.9900C14—C191.399 (3)
C2—C31.505 (4)C15—C161.389 (4)
C2—H2A0.9900C15—H15A0.9500
C2—H2B0.9900C16—C171.376 (4)
C3—H3A0.9900C16—H16A0.9500
C3—H3B0.9900C17—C181.371 (4)
C4—C91.501 (3)C18—C191.385 (4)
C4—C51.523 (3)C18—H18A0.9500
C4—H4A1.0000C19—H19A0.9500
C9—O1—C10106.4 (2)C7—C6—H6B109.0
C8—N1—C1125.9 (2)C5—C6—H6B109.0
C8—N1—H1A117.0H6A—C6—H6B107.8
C1—N1—H1A117.0C13—C7—C8119.8 (2)
C8—N2—C4123.6 (2)C13—C7—C6122.0 (2)
C8—N2—C3121.1 (2)C8—C7—C6118.2 (2)
C4—N2—C3115.0 (2)N1—C8—N2118.6 (2)
O3—N3—O2124.4 (2)N1—C8—C7119.8 (2)
O3—N3—C5116.2 (2)N2—C8—C7121.6 (2)
O2—N3—C5119.4 (2)C12—C9—O1110.4 (2)
N1—C1—C2110.2 (2)C12—C9—C4133.5 (3)
N1—C1—H1B109.6O1—C9—C4115.9 (2)
C2—C1—H1B109.6C11—C10—O1110.1 (3)
N1—C1—H1C109.6C11—C10—H10A124.9
C2—C1—H1C109.6O1—C10—H10A124.9
H1B—C1—H1C108.1C10—C11—C12106.8 (3)
C3—C2—C1109.1 (2)C10—C11—H11A126.6
C3—C2—H2A109.9C12—C11—H11A126.6
C1—C2—H2A109.9C9—C12—C11106.3 (3)
C3—C2—H2B109.9C9—C12—H12A126.8
C1—C2—H2B109.9C11—C12—H12A126.8
H2A—C2—H2B108.3O4—C13—C7125.6 (2)
N2—C3—C2110.2 (2)O4—C13—C14114.8 (2)
N2—C3—H3A109.6C7—C13—C14119.7 (2)
C2—C3—H3A109.6C15—C14—C19118.4 (2)
N2—C3—H3B109.6C15—C14—C13122.3 (2)
C2—C3—H3B109.6C19—C14—C13119.1 (2)
H3A—C3—H3B108.1C16—C15—C14121.5 (2)
N2—C4—C9109.5 (2)C16—C15—H15A119.2
N2—C4—C5112.6 (2)C14—C15—H15A119.2
C9—C4—C5108.0 (2)C17—C16—C15117.5 (3)
N2—C4—H4A108.9C17—C16—H16A121.3
C9—C4—H4A108.9C15—C16—H16A121.3
C5—C4—H4A108.9F1—C17—C18118.6 (2)
N3—C5—C4112.1 (2)F1—C17—C16117.9 (2)
N3—C5—C6109.5 (2)C18—C17—C16123.5 (3)
C4—C5—C6110.6 (2)C17—C18—C19118.0 (2)
N3—C5—H5A108.2C17—C18—H18A121.0
C4—C5—H5A108.2C19—C18—H18A121.0
C6—C5—H5A108.2C18—C19—C14121.0 (2)
C7—C6—C5112.9 (2)C18—C19—H19A119.5
C7—C6—H6A109.0C14—C19—H19A119.5
C5—C6—H6A109.0
C8—N1—C1—C218.4 (4)C6—C7—C8—N20.8 (4)
N1—C1—C2—C347.0 (3)C10—O1—C9—C120.6 (3)
C8—N2—C3—C236.6 (3)C10—O1—C9—C4173.9 (2)
C4—N2—C3—C2149.5 (2)N2—C4—C9—C1230.1 (4)
C1—C2—C3—N256.1 (3)C5—C4—C9—C1292.8 (3)
C8—N2—C4—C996.3 (3)N2—C4—C9—O1156.9 (2)
C3—N2—C4—C990.0 (3)C5—C4—C9—O180.1 (3)
C8—N2—C4—C523.8 (3)C9—O1—C10—C110.5 (3)
C3—N2—C4—C5149.9 (2)O1—C10—C11—C120.1 (3)
O3—N3—C5—C4153.2 (2)O1—C9—C12—C110.5 (3)
O2—N3—C5—C428.6 (3)C4—C9—C12—C11172.7 (3)
O3—N3—C5—C683.7 (3)C10—C11—C12—C90.3 (3)
O2—N3—C5—C694.6 (3)C8—C7—C13—O45.9 (4)
N2—C4—C5—N374.9 (3)C6—C7—C13—O4174.2 (2)
C9—C4—C5—N3164.1 (2)C8—C7—C13—C14173.9 (2)
N2—C4—C5—C647.7 (3)C6—C7—C13—C146.1 (4)
C9—C4—C5—C673.3 (3)O4—C13—C14—C15132.0 (3)
N3—C5—C6—C774.7 (2)C7—C13—C14—C1547.8 (4)
C4—C5—C6—C749.4 (3)O4—C13—C14—C1944.1 (3)
C5—C6—C7—C13153.3 (2)C7—C13—C14—C19136.1 (3)
C5—C6—C7—C826.7 (3)C19—C14—C15—C160.4 (4)
C1—N1—C8—N23.7 (4)C13—C14—C15—C16175.7 (3)
C1—N1—C8—C7176.4 (2)C14—C15—C16—C171.0 (4)
C4—N2—C8—N1179.2 (2)C15—C16—C17—F1179.1 (2)
C3—N2—C8—N15.9 (4)C15—C16—C17—C180.7 (4)
C4—N2—C8—C70.7 (4)F1—C17—C18—C19178.0 (2)
C3—N2—C8—C7174.0 (2)C16—C17—C18—C190.4 (4)
C13—C7—C8—N10.7 (4)C17—C18—C19—C141.1 (4)
C6—C7—C8—N1179.2 (2)C15—C14—C19—C180.7 (4)
C13—C7—C8—N2179.2 (2)C13—C14—C19—C18176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.881.862.579 (3)138
N1—H1A···F1i0.882.603.130 (3)120
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H18FN3O4
Mr371.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)15.375 (3), 7.0706 (14), 15.255 (3)
V3)1658.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.25 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
3533, 1943, 1657
Rint0.020
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.066, 1.01
No. of reflections1943
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.881.862.579 (3)138
N1—H1A···F1i0.882.603.130 (3)120
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The Institute of Chemistry, Chinese Academy of Science, Beijing, is thanked for providing the single-crystal facility and the Higher Education Commission, Islamabad, Pakistan, is gratefully acknowledged for providing financial support.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, Z.-T. & Wang, M.-X. (1994). Heterocycles, 37, 1233–1262.  CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357–1360.  Google Scholar
First citationYu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett. pp. 1835–1840.  Web of Science CrossRef Google Scholar
First citationYu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds