metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(3-hy­droxy­benzoato-κO)manganese(II)–2,9-di­methyl-1,10-phenanthroline–water (1/1/1)

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China
*Correspondence e-mail: liuxuejunkf@hotmail.com

(Received 6 May 2009; accepted 4 July 2009; online 11 July 2009)

In the title compound, [Mn(C7H5O3)2(C14H12N2)(H2O)]·C14H12N2·H2O, the MnII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, two monodentate 3-hydroxy­benzoate anions (3-HBA) and one water mol­ecule in a distorted trigonal-bipyramidal environment. An uncoordinated dmphen and an uncoordinated water mol­ecule cocrystallized with each complex mol­ecule. Intra- and inter­molecular O—H⋯N and O—H⋯O hydrogen bonds are also present between the coordinated 3-HBA and water mol­ecules and the uncoordinated dmphen and water mol­ecules in the crystal. The packing of the structure is further stabilized by ππ stacking inter­actions involving dmphen mol­ecules, with a centroid–centroid separation of 3.705 (3) Å.

Related literature

For related structures, see Wang et al. (2003[Wang, W.-G., Chen, F., Chen, C.-N. & Liu, Q.-T. (2003). Chin. J. Struct. Chem. 22, 399-402.]); Xuan et al. (2007[Xuan, X., Zhao, P. & Zhang, S. (2007). Acta Cryst. E63, m2813-m2814.]); Xuan & Zhao (2007[Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m3180-m3181.]); Zhao et al. (2007[Zhao, P.-Z., Xuan, X.-P. & Wang, J.-G. (2007). Acta Cryst. E63, m2127.], 2009[Zhao, P.-Z., Yan, F.-M. & Wang, J.-G. (2009). Acta Cryst. E65, m194-m195.]). For bond-length data, see: Su & Xu (2005[Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H5O3)2(C14H12N2)(H2O)]·C14H12N2·H2O

  • Mr = 781.70

  • Monoclinic, P 21 /c

  • a = 14.7103 (16) Å

  • b = 18.578 (2) Å

  • c = 14.4598 (16) Å

  • β = 106.302 (1)°

  • V = 3792.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.953

  • 22827 measured reflections

  • 7009 independent reflections

  • 4112 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.01

  • 7009 reflections

  • 502 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O1i 0.82 1.83 2.653 (4) 176
O5—H5⋯O7ii 0.82 1.88 2.686 (4) 168
O2—H4W⋯N3iii 0.83 1.96 2.764 (4) 162
O2—H3W⋯O3 0.83 1.80 2.617 (3) 165
O1—H2W⋯N4 0.83 2.15 2.951 (4) 161
O1—H1W⋯O3iv 0.85 1.99 2.839 (4) 180
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Manganese(II)-phenanthroline complexes containing benzoate anion have been extensively synthesized and reported (Xuan et al., 2007; Xuan & Zhao, 2007; Wang et al. 2003; Zhao et al., 2007; 2009). The MnII ion, in the complex molecule obtained by reaction of dmphen, sodium 3-hydroxy-benzoate and Mn(NO3)2, is six-coordinated by a bidentate dmphen ligand and two bidentate 3-hydroxybenzoate anions in a distorted octahedral environment (Xuan et al., 2007). Recently, we have obtained the title compound, (I), a new Mn(II) complex following the procedure reported in the literature (Xuan et al., 2007), and its structure is reported here.

The asymmetric unit of (I) (Fig. 1) is composed of a Mn-complex wherein an MnII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, two monodentate 3-hydroxy-benzoate anions (3-HBA) and one water molecule, one non-coordinated dmphen molecule and one bridged water molecule. The Mn atom is five-coordinated by two N atoms from dmphen ligands, three O atoms from two 3-HBAs and one water, forming a distorted triangular bipyramid geometry. The axial positions are occupied by O4 atom of 3-HBA and N1 atom of dmphen. Two 3-HBA anions act as monodentate ligands coordinated to Mn with 2.046 (3) and 2.153 (2) Å. The former is shorter than the normal Mn—O bond distance found in those similar complexes (Su & Xu, 2005). The title complex is very different from that reported in literature (Xuan et al., 2007).

The crystal structure of (I) is stabilized by intramolecular O—H···O hydrogen bonds between the coordinated water and carboxylate group of 3HBA, and O—H···N hydrogen bonds between the uncoordinated water molecules and uncoordinated dmphen. The intermolecular O—H···O and O—H···N hydrogen bonds are complicated, presented by coordinated 3HBA and uncoordinated water and dmphen molecules (Table 2 and Fig. 2). In addition, ππ stacking interaction between the dmphen rings (Fig. 2) is observed with a Cg4 -Cg11i separation of 3.705 (3) Å (Cg4 is the centroid of the C5—C8/C13—C14; Cg11 is the centroid of the N4/C30—C33/C42; symmetry code: (i) x,1/2 - y,1/2 + z).

Related literature top

For related structures, see Wang et al. (2003); Xuan et al. (2007); Xuan & Zhao (2007); Zhao et al. (2007, 2009). For bond-length data, see: Su & Xu (2005).

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of Manganese(II)-phenanthroline complexes without uncoordinated dmphen molecule. The prepared process was similar to that of (2,9-Dimethyl-1,10-phenanthroline-κ2N,N')bis(3-hydroxybenzoato-κ2O,O')manganese(II) 2,9-dimethyl-1,10-phenanthroline dihydrate(Xuan et al. 2007), but the molar ratio of dmphen to 3-HBA is fixed at 1:1. Yellow single crystals of (I) were obtained by slow evaporation of the filtrate over 30 days.

Refinement top

The H atoms bound to O were found via Fourier difference map, and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with fixed C—H distances of 0.93 Å (C—H) [Uiso(H) = 1.2Ueq(C)] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq(C)]. As for the residual electron density, the highest peak (0.920 e.Å-3) is 2.21 Å from H40C and the deepest hole (-0.275 e.Å-3) is 0.75 Å from Mn1, respectively, which indicates all atoms have been found.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick,2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for Non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded(dashed lines) and ππ stacking interactions.
Aqua(2,9-dimethyl-1,10-phenanthroline-κ2N,N')bis(3-hydroxybenzoato- κO)manganese(II)–2,9-dimethyl-1,10-phenanthroline–water (1/1/1) top
Crystal data top
[Mn(C7H5O3)2(C14H12N2)(H2O)]·C14H12N2·H2OF(000) = 1628
Mr = 781.70Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7103 (16) ÅCell parameters from 2405 reflections
b = 18.578 (2) Åθ = 2.6–20.4°
c = 14.4598 (16) ŵ = 0.41 mm1
β = 106.302 (1)°T = 296 K
V = 3792.9 (7) Å3Block, yellow
Z = 40.37 × 0.35 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7009 independent reflections
Radiation source: fine-focus sealed tube4112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1716
Tmin = 0.864, Tmax = 0.953k = 2222
22827 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.5004P]
where P = (Fo2 + 2Fc2)/3
7009 reflections(Δ/σ)max = 0.001
502 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn(C7H5O3)2(C14H12N2)(H2O)]·C14H12N2·H2OV = 3792.9 (7) Å3
Mr = 781.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7103 (16) ŵ = 0.41 mm1
b = 18.578 (2) ÅT = 296 K
c = 14.4598 (16) Å0.37 × 0.35 × 0.12 mm
β = 106.302 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7009 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4112 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.953Rint = 0.063
22827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.01Δρmax = 0.92 e Å3
7009 reflectionsΔρmin = 0.28 e Å3
502 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.14385 (4)0.32119 (3)0.70760 (4)0.03899 (18)
O10.4872 (2)0.20746 (15)0.2976 (2)0.0816 (10)
H1W0.44100.23600.27540.122*
H2W0.45240.17350.30250.122*
O20.26757 (17)0.32531 (12)0.66050 (17)0.0504 (6)
H3W0.29490.28590.67430.076*
H4W0.30590.35900.67890.076*
O30.3326 (2)0.19785 (13)0.7227 (2)0.0698 (9)
O40.1872 (2)0.21101 (13)0.73842 (19)0.0562 (7)
O50.0852 (2)0.03641 (14)0.7926 (2)0.0727 (9)
H50.08770.08050.79480.109*
O60.02587 (19)0.28869 (14)0.60321 (19)0.0607 (7)
O70.0763 (2)0.32079 (14)0.68232 (18)0.0611 (7)
O80.3901 (2)0.24277 (17)0.4640 (2)0.0710 (8)
H80.42750.23390.41150.106*
N10.1329 (2)0.44109 (14)0.67497 (19)0.0402 (7)
N20.13357 (19)0.37248 (14)0.84230 (19)0.0393 (7)
N30.3926 (2)0.06105 (16)0.1783 (2)0.0514 (8)
N40.3871 (2)0.08897 (18)0.3634 (2)0.0519 (8)
C10.1284 (3)0.4289 (2)0.5069 (3)0.0676 (12)
H1A0.19170.41530.50800.101*
H1B0.10010.45570.44920.101*
H1C0.09160.38640.50820.101*
C20.1313 (3)0.47420 (19)0.5925 (3)0.0500 (10)
C30.1338 (3)0.5494 (2)0.5864 (3)0.0691 (13)
H30.13590.57130.52920.083*
C40.1331 (3)0.5897 (2)0.6630 (4)0.0752 (14)
H40.13460.63960.65840.090*
C50.1303 (3)0.5579 (2)0.7501 (3)0.0597 (11)
C60.1251 (4)0.5968 (2)0.8322 (4)0.0812 (15)
H60.12500.64680.83030.097*
C70.1204 (4)0.5637 (3)0.9124 (4)0.0811 (15)
H70.11590.59090.96490.097*
C80.1222 (3)0.4863 (2)0.9191 (3)0.0589 (11)
C90.1168 (3)0.4490 (3)1.0004 (3)0.0736 (14)
H90.11200.47441.05420.088*
C100.1184 (3)0.3762 (3)1.0024 (3)0.0662 (12)
H100.11320.35161.05670.079*
C110.1281 (3)0.3380 (2)0.9214 (3)0.0500 (10)
C120.1318 (3)0.2578 (2)0.9226 (3)0.0700 (13)
H12A0.08480.23930.86760.105*
H12B0.11950.24030.98040.105*
H12C0.19340.24220.92070.105*
C130.1297 (3)0.44604 (18)0.8401 (2)0.0435 (9)
C140.1321 (2)0.48206 (18)0.7530 (2)0.0421 (9)
C150.2586 (3)0.17416 (19)0.7392 (2)0.0435 (9)
C160.2549 (3)0.09441 (18)0.7580 (2)0.0404 (9)
C170.3336 (3)0.0513 (2)0.7630 (3)0.0493 (10)
H170.38890.07150.75530.059*
C180.3291 (3)0.0210 (2)0.7792 (3)0.0584 (11)
H180.38200.04970.78350.070*
C190.2469 (3)0.05203 (19)0.7893 (3)0.0515 (10)
H190.24460.10120.80030.062*
C200.1686 (3)0.00984 (19)0.7831 (2)0.0455 (9)
C210.1730 (3)0.06356 (18)0.7671 (2)0.0438 (9)
H210.12000.09210.76260.053*
C220.0567 (3)0.29329 (17)0.6123 (3)0.0435 (9)
C230.1351 (3)0.26364 (16)0.5298 (2)0.0375 (8)
C240.2275 (3)0.26573 (18)0.5323 (3)0.0452 (9)
H240.24230.28580.58520.054*
C250.2991 (3)0.23835 (19)0.4570 (3)0.0489 (10)
C260.2773 (3)0.2086 (2)0.3786 (3)0.0608 (11)
H260.32520.19050.32730.073*
C270.1842 (3)0.2056 (2)0.3766 (3)0.0666 (12)
H270.16930.18480.32430.080*
C280.1133 (3)0.23324 (19)0.4515 (3)0.0498 (10)
H280.05070.23150.44940.060*
C290.3855 (3)0.1785 (3)0.4831 (3)0.0954 (18)
H29A0.45040.19140.51260.143*
H29B0.34980.18420.52900.143*
H29C0.35960.20900.42850.143*
C300.3805 (3)0.1015 (3)0.4508 (3)0.0704 (13)
C310.3716 (3)0.0449 (4)0.5139 (3)0.097 (2)
H310.36640.05510.57520.116*
C320.3707 (4)0.0247 (4)0.4829 (5)0.104 (2)
H320.36530.06210.52380.125*
C330.3778 (3)0.0405 (3)0.3916 (4)0.0786 (15)
C340.3801 (4)0.1132 (3)0.3554 (5)0.0933 (18)
H340.37640.15240.39420.112*
C350.3872 (4)0.1235 (3)0.2675 (5)0.0986 (18)
H350.38890.17050.24600.118*
C360.3924 (3)0.0675 (2)0.2055 (4)0.0711 (13)
C370.3979 (3)0.0764 (3)0.1099 (4)0.0848 (16)
H370.39930.12260.08580.102*
C380.4009 (4)0.0201 (3)0.0536 (4)0.0839 (15)
H380.40460.02700.00900.101*
C390.3986 (3)0.0482 (2)0.0890 (3)0.0652 (12)
C400.4033 (4)0.1128 (3)0.0284 (3)0.0960 (18)
H40A0.34330.13720.01200.144*
H40B0.41760.09780.02940.144*
H40C0.45180.14480.06390.144*
C410.3899 (3)0.0049 (2)0.2362 (3)0.0514 (10)
C420.3853 (3)0.0190 (2)0.3336 (3)0.0527 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0398 (4)0.0366 (3)0.0411 (3)0.0033 (3)0.0122 (2)0.0020 (2)
O10.052 (2)0.0693 (19)0.110 (3)0.0079 (15)0.0003 (18)0.0007 (18)
O20.0444 (16)0.0410 (13)0.0678 (16)0.0026 (12)0.0188 (13)0.0056 (12)
O30.0519 (19)0.0475 (16)0.115 (2)0.0035 (14)0.0309 (18)0.0107 (15)
O40.0597 (19)0.0398 (14)0.0804 (19)0.0056 (14)0.0381 (16)0.0060 (13)
O50.064 (2)0.0546 (17)0.105 (2)0.0081 (16)0.0319 (18)0.0095 (18)
O60.0391 (18)0.0731 (19)0.0679 (18)0.0116 (14)0.0116 (15)0.0169 (14)
O70.065 (2)0.0629 (17)0.0533 (16)0.0053 (15)0.0137 (14)0.0156 (14)
O80.0403 (19)0.086 (2)0.078 (2)0.0084 (16)0.0031 (15)0.0093 (18)
N10.0388 (19)0.0376 (16)0.0435 (16)0.0010 (13)0.0101 (14)0.0019 (13)
N20.0361 (18)0.0419 (17)0.0400 (16)0.0002 (14)0.0109 (14)0.0009 (13)
N30.049 (2)0.0506 (19)0.057 (2)0.0096 (16)0.0186 (16)0.0043 (16)
N40.044 (2)0.067 (2)0.0445 (18)0.0010 (17)0.0123 (15)0.0038 (16)
C10.083 (4)0.076 (3)0.045 (2)0.007 (3)0.021 (2)0.012 (2)
C20.048 (3)0.049 (2)0.052 (2)0.0038 (19)0.0115 (19)0.0164 (18)
C30.072 (3)0.056 (3)0.074 (3)0.001 (2)0.014 (3)0.023 (2)
C40.081 (4)0.036 (2)0.101 (4)0.001 (2)0.014 (3)0.015 (3)
C50.056 (3)0.040 (2)0.079 (3)0.001 (2)0.011 (2)0.010 (2)
C60.090 (4)0.047 (3)0.096 (4)0.007 (3)0.009 (3)0.017 (3)
C70.093 (4)0.068 (3)0.077 (3)0.009 (3)0.013 (3)0.037 (3)
C80.057 (3)0.066 (3)0.051 (2)0.000 (2)0.010 (2)0.018 (2)
C90.070 (3)0.098 (4)0.052 (3)0.010 (3)0.015 (2)0.025 (3)
C100.063 (3)0.100 (4)0.040 (2)0.009 (3)0.021 (2)0.002 (2)
C110.040 (2)0.067 (3)0.046 (2)0.0028 (19)0.0174 (18)0.0066 (19)
C120.083 (4)0.063 (3)0.074 (3)0.008 (2)0.040 (3)0.027 (2)
C130.037 (2)0.045 (2)0.046 (2)0.0013 (17)0.0069 (17)0.0103 (17)
C140.033 (2)0.039 (2)0.051 (2)0.0007 (16)0.0059 (17)0.0009 (17)
C150.049 (3)0.039 (2)0.0435 (19)0.0006 (19)0.0143 (18)0.0005 (16)
C160.044 (2)0.045 (2)0.0317 (18)0.0005 (18)0.0089 (16)0.0005 (15)
C170.047 (3)0.052 (2)0.049 (2)0.003 (2)0.0143 (19)0.0015 (18)
C180.057 (3)0.046 (2)0.072 (3)0.009 (2)0.018 (2)0.004 (2)
C190.061 (3)0.036 (2)0.055 (2)0.000 (2)0.014 (2)0.0004 (17)
C200.048 (3)0.046 (2)0.044 (2)0.010 (2)0.0147 (18)0.0025 (16)
C210.049 (3)0.038 (2)0.046 (2)0.0024 (18)0.0153 (18)0.0001 (16)
C220.049 (3)0.0308 (18)0.047 (2)0.0027 (18)0.0085 (19)0.0024 (16)
C230.039 (2)0.0287 (18)0.0422 (19)0.0001 (16)0.0071 (17)0.0031 (15)
C240.050 (3)0.039 (2)0.047 (2)0.0009 (18)0.0123 (19)0.0003 (16)
C250.039 (3)0.042 (2)0.060 (3)0.0030 (18)0.005 (2)0.0087 (18)
C260.055 (3)0.062 (3)0.054 (2)0.009 (2)0.005 (2)0.010 (2)
C270.068 (3)0.073 (3)0.057 (3)0.006 (2)0.014 (2)0.020 (2)
C280.043 (3)0.047 (2)0.057 (2)0.0015 (18)0.011 (2)0.0063 (18)
C290.066 (4)0.150 (5)0.070 (3)0.001 (3)0.017 (3)0.044 (3)
C300.047 (3)0.111 (4)0.052 (3)0.004 (3)0.010 (2)0.009 (3)
C310.051 (3)0.190 (7)0.047 (3)0.017 (4)0.010 (2)0.014 (4)
C320.061 (4)0.150 (6)0.092 (5)0.011 (4)0.006 (3)0.054 (4)
C330.047 (3)0.102 (4)0.079 (3)0.003 (3)0.004 (2)0.032 (3)
C340.071 (4)0.058 (3)0.139 (5)0.003 (3)0.010 (4)0.048 (4)
C350.083 (4)0.057 (3)0.148 (6)0.001 (3)0.019 (4)0.010 (4)
C360.047 (3)0.051 (3)0.109 (4)0.002 (2)0.011 (3)0.001 (3)
C370.068 (4)0.078 (4)0.108 (4)0.004 (3)0.025 (3)0.046 (3)
C380.075 (4)0.099 (4)0.080 (3)0.009 (3)0.024 (3)0.032 (3)
C390.057 (3)0.077 (3)0.067 (3)0.016 (2)0.025 (2)0.015 (2)
C400.112 (5)0.114 (4)0.078 (3)0.036 (4)0.053 (3)0.016 (3)
C410.035 (2)0.048 (2)0.068 (3)0.0042 (18)0.007 (2)0.004 (2)
C420.035 (2)0.060 (3)0.060 (2)0.0017 (19)0.0077 (19)0.016 (2)
Geometric parameters (Å, º) top
Mn1—O62.046 (3)C13—C141.435 (5)
Mn1—O22.116 (2)C15—C161.510 (5)
Mn1—O42.153 (2)C16—C211.373 (5)
Mn1—N22.211 (3)C16—C171.394 (5)
Mn1—N12.273 (3)C17—C181.368 (5)
O1—H1W0.8506C17—H170.9300
O1—H2W0.8278C18—C191.384 (5)
O2—H3W0.8328C18—H180.9300
O2—H4W0.8341C19—C201.375 (5)
O3—C151.257 (4)C19—H190.9300
O4—C151.251 (4)C20—C211.388 (5)
O5—C201.364 (4)C21—H210.9300
O5—H50.8200C22—C231.511 (5)
O6—C221.261 (4)C23—C241.372 (5)
O7—C221.238 (4)C23—C281.381 (5)
O8—C251.375 (4)C24—C251.381 (5)
O8—H80.8200C24—H240.9300
N1—C21.337 (4)C25—C261.377 (5)
N1—C141.364 (4)C26—C271.379 (6)
N2—C111.333 (4)C26—H260.9300
N2—C131.368 (4)C27—C281.374 (5)
N3—C391.341 (5)C27—H270.9300
N3—C411.344 (5)C28—H280.9300
N4—C301.314 (5)C29—C301.500 (6)
N4—C421.368 (5)C29—H29A0.9600
C1—C21.488 (5)C29—H29B0.9600
C1—H1A0.9600C29—H29C0.9600
C1—H1B0.9600C30—C311.422 (7)
C1—H1C0.9600C31—C321.368 (8)
C2—C31.400 (5)C31—H310.9300
C3—C41.341 (6)C32—C331.384 (8)
C3—H30.9300C32—H320.9300
C4—C51.402 (6)C33—C421.409 (6)
C4—H40.9300C33—C341.453 (7)
C5—C141.409 (5)C34—C351.318 (7)
C5—C61.411 (6)C34—H340.9300
C6—C71.330 (6)C35—C361.389 (7)
C6—H60.9300C35—H350.9300
C7—C81.440 (6)C36—C371.416 (7)
C7—H70.9300C36—C411.421 (5)
C8—C91.386 (6)C37—C381.335 (7)
C8—C131.395 (5)C37—H370.9300
C9—C101.353 (6)C38—C391.371 (6)
C9—H90.9300C38—H380.9300
C10—C111.411 (5)C39—C401.499 (6)
C10—H100.9300C40—H40A0.9600
C11—C121.491 (5)C40—H40B0.9600
C12—H12A0.9600C40—H40C0.9600
C12—H12B0.9600C41—C421.453 (5)
C12—H12C0.9600
O6—Mn1—O2113.66 (10)C16—C17—H17120.2
O6—Mn1—O490.74 (11)C17—C18—C19120.9 (4)
O2—Mn1—O482.49 (9)C17—C18—H18119.6
O6—Mn1—N2121.57 (11)C19—C18—H18119.6
O2—Mn1—N2123.06 (10)C20—C19—C18119.8 (3)
O4—Mn1—N2108.47 (10)C20—C19—H19120.1
O6—Mn1—N198.05 (11)C18—C19—H19120.1
O2—Mn1—N185.12 (9)O5—C20—C19123.2 (3)
O4—Mn1—N1166.93 (10)O5—C20—C21117.2 (3)
N2—Mn1—N175.06 (10)C19—C20—C21119.6 (4)
H1W—O1—H2W93.4C16—C21—C20120.6 (4)
Mn1—O2—H3W107.0C16—C21—H21119.7
Mn1—O2—H4W119.3C20—C21—H21119.7
H3W—O2—H4W110.2O7—C22—O6124.4 (4)
C15—O4—Mn1136.2 (2)O7—C22—C23119.7 (4)
C20—O5—H5109.5O6—C22—C23115.9 (3)
C22—O6—Mn1123.1 (2)C24—C23—C28119.5 (3)
C25—O8—H8109.5C24—C23—C22120.7 (3)
C2—N1—C14118.7 (3)C28—C23—C22119.7 (3)
C2—N1—Mn1128.2 (2)C23—C24—C25120.7 (3)
C14—N1—Mn1113.1 (2)C23—C24—H24119.7
C11—N2—C13119.2 (3)C25—C24—H24119.7
C11—N2—Mn1125.7 (2)O8—C25—C26122.8 (4)
C13—N2—Mn1115.0 (2)O8—C25—C24117.5 (4)
C39—N3—C41118.9 (3)C26—C25—C24119.7 (4)
C30—N4—C42118.1 (4)C25—C26—C27119.6 (4)
C2—C1—H1A109.5C25—C26—H26120.2
C2—C1—H1B109.5C27—C26—H26120.2
H1A—C1—H1B109.5C28—C27—C26120.5 (4)
C2—C1—H1C109.5C28—C27—H27119.7
H1A—C1—H1C109.5C26—C27—H27119.7
H1B—C1—H1C109.5C27—C28—C23119.9 (4)
N1—C2—C3121.4 (4)C27—C28—H28120.0
N1—C2—C1118.1 (3)C23—C28—H28120.0
C3—C2—C1120.5 (4)C30—C29—H29A109.5
C4—C3—C2119.9 (4)C30—C29—H29B109.5
C4—C3—H3120.0H29A—C29—H29B109.5
C2—C3—H3120.0C30—C29—H29C109.5
C3—C4—C5121.0 (4)H29A—C29—H29C109.5
C3—C4—H4119.5H29B—C29—H29C109.5
C5—C4—H4119.5N4—C30—C31122.1 (5)
C4—C5—C14116.4 (4)N4—C30—C29117.3 (4)
C4—C5—C6124.2 (4)C31—C30—C29120.6 (5)
C14—C5—C6119.4 (4)C32—C31—C30118.8 (5)
C7—C6—C5121.7 (4)C32—C31—H31120.6
C7—C6—H6119.2C30—C31—H31120.6
C5—C6—H6119.2C31—C32—C33121.1 (5)
C6—C7—C8121.0 (4)C31—C32—H32119.4
C6—C7—H7119.5C33—C32—H32119.4
C8—C7—H7119.5C32—C33—C42116.1 (5)
C9—C8—C13117.5 (4)C32—C33—C34123.7 (5)
C9—C8—C7123.5 (4)C42—C33—C34120.1 (5)
C13—C8—C7119.0 (4)C35—C34—C33119.9 (5)
C10—C9—C8120.9 (4)C35—C34—H34120.1
C10—C9—H9119.5C33—C34—H34120.1
C8—C9—H9119.5C34—C35—C36123.2 (5)
C9—C10—C11119.3 (4)C34—C35—H35118.4
C9—C10—H10120.3C36—C35—H35118.4
C11—C10—H10120.3C35—C36—C37124.9 (5)
N2—C11—C10121.0 (4)C35—C36—C41119.8 (5)
N2—C11—C12118.7 (3)C37—C36—C41115.4 (4)
C10—C11—C12120.3 (4)C38—C37—C36121.7 (4)
C11—C12—H12A109.5C38—C37—H37119.1
C11—C12—H12B109.5C36—C37—H37119.1
H12A—C12—H12B109.5C37—C38—C39119.2 (5)
C11—C12—H12C109.5C37—C38—H38120.4
H12A—C12—H12C109.5C39—C38—H38120.4
H12B—C12—H12C109.5N3—C39—C38122.7 (4)
N2—C13—C8122.0 (3)N3—C39—C40116.5 (4)
N2—C13—C14118.4 (3)C38—C39—C40120.8 (4)
C8—C13—C14119.7 (3)C39—C40—H40A109.5
N1—C14—C5122.5 (3)C39—C40—H40B109.5
N1—C14—C13118.3 (3)H40A—C40—H40B109.5
C5—C14—C13119.2 (3)C39—C40—H40C109.5
O4—C15—O3125.2 (3)H40A—C40—H40C109.5
O4—C15—C16117.7 (3)H40B—C40—H40C109.5
O3—C15—C16117.1 (3)N3—C41—C36122.2 (4)
C21—C16—C17119.6 (3)N3—C41—C42118.8 (3)
C21—C16—C15120.3 (3)C36—C41—C42119.0 (4)
C17—C16—C15120.1 (3)N4—C42—C33123.7 (4)
C18—C17—C16119.6 (4)N4—C42—C41118.3 (3)
C18—C17—H17120.2C33—C42—C41117.9 (4)
O6—Mn1—O4—C15122.5 (4)Mn1—O4—C15—O32.9 (6)
O2—Mn1—O4—C158.7 (3)Mn1—O4—C15—C16174.8 (2)
N2—Mn1—O4—C15113.7 (3)O4—C15—C16—C214.4 (5)
N1—Mn1—O4—C1510.0 (7)O3—C15—C16—C21173.6 (3)
O2—Mn1—O6—C22168.8 (3)O4—C15—C16—C17177.8 (3)
O4—Mn1—O6—C22109.1 (3)O3—C15—C16—C174.3 (5)
N2—Mn1—O6—C223.2 (3)C21—C16—C17—C181.6 (5)
N1—Mn1—O6—C2280.6 (3)C15—C16—C17—C18179.4 (3)
O6—Mn1—N1—C258.4 (3)C16—C17—C18—C191.0 (6)
O2—Mn1—N1—C254.9 (3)C17—C18—C19—C200.1 (6)
O4—Mn1—N1—C273.5 (6)C18—C19—C20—O5179.7 (3)
N2—Mn1—N1—C2179.0 (3)C18—C19—C20—C210.3 (5)
O6—Mn1—N1—C14124.7 (2)C17—C16—C21—C201.2 (5)
O2—Mn1—N1—C14122.1 (2)C15—C16—C21—C20179.1 (3)
O4—Mn1—N1—C14103.5 (5)O5—C20—C21—C16179.2 (3)
N2—Mn1—N1—C144.0 (2)C19—C20—C21—C160.3 (5)
O6—Mn1—N2—C1185.3 (3)Mn1—O6—C22—O73.6 (5)
O2—Mn1—N2—C11110.6 (3)Mn1—O6—C22—C23177.4 (2)
O4—Mn1—N2—C1117.5 (3)O7—C22—C23—C241.1 (5)
N1—Mn1—N2—C11175.6 (3)O6—C22—C23—C24179.8 (3)
O6—Mn1—N2—C1392.6 (3)O7—C22—C23—C28179.7 (3)
O2—Mn1—N2—C1371.6 (3)O6—C22—C23—C280.7 (5)
O4—Mn1—N2—C13164.6 (2)C28—C23—C24—C250.6 (5)
N1—Mn1—N2—C132.2 (2)C22—C23—C24—C25179.8 (3)
C14—N1—C2—C33.3 (6)C23—C24—C25—O8179.5 (3)
Mn1—N1—C2—C3173.5 (3)C23—C24—C25—C260.1 (5)
C14—N1—C2—C1177.7 (3)O8—C25—C26—C27179.7 (4)
Mn1—N1—C2—C15.5 (5)C24—C25—C26—C270.8 (6)
N1—C2—C3—C43.3 (7)C25—C26—C27—C281.1 (6)
C1—C2—C3—C4177.7 (4)C26—C27—C28—C230.6 (6)
C2—C3—C4—C50.2 (7)C24—C23—C28—C270.3 (5)
C3—C4—C5—C142.5 (7)C22—C23—C28—C27179.4 (3)
C3—C4—C5—C6177.0 (5)C42—N4—C30—C310.1 (6)
C4—C5—C6—C7178.4 (5)C42—N4—C30—C29178.2 (4)
C14—C5—C6—C71.0 (7)N4—C30—C31—C320.6 (7)
C5—C6—C7—C81.2 (8)C29—C30—C31—C32177.6 (5)
C6—C7—C8—C9179.5 (5)C30—C31—C32—C330.4 (8)
C6—C7—C8—C130.4 (7)C31—C32—C33—C420.3 (8)
C13—C8—C9—C100.2 (7)C31—C32—C33—C34178.2 (5)
C7—C8—C9—C10179.7 (4)C32—C33—C34—C35179.8 (6)
C8—C9—C10—C111.6 (7)C42—C33—C34—C351.3 (8)
C13—N2—C11—C100.0 (5)C33—C34—C35—C360.4 (9)
Mn1—N2—C11—C10177.7 (3)C34—C35—C36—C37178.4 (5)
C13—N2—C11—C12179.6 (3)C34—C35—C36—C410.1 (8)
Mn1—N2—C11—C121.8 (5)C35—C36—C37—C38178.8 (5)
C9—C10—C11—N21.5 (6)C41—C36—C37—C380.4 (7)
C9—C10—C11—C12178.9 (4)C36—C37—C38—C390.1 (8)
C11—N2—C13—C81.4 (5)C41—N3—C39—C380.9 (7)
Mn1—N2—C13—C8179.4 (3)C41—N3—C39—C40178.9 (4)
C11—N2—C13—C14177.8 (3)C37—C38—C39—N30.6 (8)
Mn1—N2—C13—C140.2 (4)C37—C38—C39—C40179.2 (5)
C9—C8—C13—N21.4 (6)C39—N3—C41—C360.5 (6)
C7—C8—C13—N2178.8 (4)C39—N3—C41—C42178.7 (4)
C9—C8—C13—C14177.8 (4)C35—C36—C41—N3178.5 (4)
C7—C8—C13—C142.1 (6)C37—C36—C41—N30.1 (6)
C2—N1—C14—C50.4 (5)C35—C36—C41—C422.2 (6)
Mn1—N1—C14—C5176.9 (3)C37—C36—C41—C42179.3 (4)
C2—N1—C14—C13177.3 (3)C30—N4—C42—C330.7 (6)
Mn1—N1—C14—C135.4 (4)C30—N4—C42—C41178.3 (4)
C4—C5—C14—N12.5 (6)C32—C33—C42—N40.9 (6)
C6—C5—C14—N1177.0 (4)C34—C33—C42—N4177.7 (4)
C4—C5—C14—C13179.8 (4)C32—C33—C42—C41178.1 (4)
C6—C5—C14—C130.7 (6)C34—C33—C42—C413.4 (6)
N2—C13—C14—N13.6 (5)N3—C41—C42—N42.1 (5)
C8—C13—C14—N1175.6 (3)C36—C41—C42—N4177.2 (3)
N2—C13—C14—C5178.6 (3)N3—C41—C42—C33176.9 (4)
C8—C13—C14—C52.2 (5)C36—C41—C42—C333.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O1i0.821.832.653 (4)176
O5—H5···O7ii0.821.882.686 (4)168
O2—H4W···N3iii0.831.962.764 (4)162
O2—H3W···O30.831.802.617 (3)165
O1—H2W···N40.832.152.951 (4)161
O1—H1W···O3iv0.851.992.839 (4)180
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O3)2(C14H12N2)(H2O)]·C14H12N2·H2O
Mr781.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.7103 (16), 18.578 (2), 14.4598 (16)
β (°) 106.302 (1)
V3)3792.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.37 × 0.35 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.864, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
22827, 7009, 4112
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.01
No. of reflections7009
No. of parameters502
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick,2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O1i0.821.832.653 (4)175.7
O5—H5···O7ii0.821.882.686 (4)167.5
O2—H4W···N3iii0.831.962.764 (4)161.7
O2—H3W···O30.831.802.617 (3)165.0
O1—H2W···N40.832.152.951 (4)161.4
O1—H1W···O3iv0.851.992.839 (4)179.6
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

We are grateful to the Natural Science Foundation of Henan University (07YBZR048) for financial support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-G., Chen, F., Chen, C.-N. & Liu, Q.-T. (2003). Chin. J. Struct. Chem. 22, 399–402.  CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m3180–m3181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXuan, X., Zhao, P. & Zhang, S. (2007). Acta Cryst. E63, m2813–m2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Xuan, X.-P. & Wang, J.-G. (2007). Acta Cryst. E63, m2127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Yan, F.-M. & Wang, J.-G. (2009). Acta Cryst. E65, m194–m195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds