organic compounds
3-Hydroxy-3a,6,8c-trimethylperhydrooxireno[2′,3′:7,8]naphtho[1,2-b]furan-7(2H)-one
aDepartamento de Química, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and dInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com
The title compound, C15H22O4, consists of two trans-fused six-membered rings and a trans-fused five-membered γ-lactone. The epoxy and hydroxyl groups are α-oriented. The cyclohexane rings adopt half-chair and chair conformations and the lactone ring is in an The molecular structure is stabilized by one O—H⋯O and three C—H⋯O intramolecular hydrogen bonds.
Related literature
For background to sesquiterpene ). For their biological activity, see: Pillay et al. (2007); Ohno et al. (2005); Lindenmeyer et al. (2006). For synthetic details, see: Villar et al. (1983); González, et al. (1982). For a related structure, see: Rychlewska et al. (1982). For puckering parameters, see: Cremer & Pople (1975).
see: Fraga (2008Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809025124/pv2169sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025124/pv2169Isup2.hkl
The title compound (I) was prepared by epoxidation of 1 with monoperoxyphthalic acid magnesium (MMPPA) at room temperature as shown in Fig. 2. In turn the product 1 was obtained by reduction of desoxyvulgarina(1-oxo-6β,7α,11β-H-eudesm-4-en-6,12-olide) (Villar et al., 1983), with sodium borohydride in ethanol (González, et al., 1982). Recrystallization from hexane/athyl acetate (3:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.
Due to lack of sufficient anomalous dospersion effects, an
was not established. Therefore, Friedel pairs (634) were merged. The hydroxyl H4 atom was located in Fourier difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding with C—H = 0.98 Å for CH, 0.97 Å (CH2) or 0.96 Å (CH3) with Uiso(H) = 1.2 Ueq (C) (for CH, CH2) or Uiso(H) = 1.5Ueq(C) (for CH3).Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. Preparation of the title compound. |
C15H22O4 | F(000) = 288 |
Mr = 266.33 | Dx = 1.299 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2yb | Cell parameters from 1601 reflections |
a = 8.251 (3) Å | θ = 2.4–27.1° |
b = 7.239 (2) Å | µ = 0.09 mm−1 |
c = 11.434 (2) Å | T = 292 K |
β = 94.201 (5)° | Block, colourless |
V = 681.1 (3) Å3 | 0.20 × 0.09 × 0.08 mm |
Z = 2 |
Nonius KappaCCD area-detector diffractometer | 1495 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
Graphite monochromator | θmax = 27.1°, θmin = 2.5° |
ϕ scans, and ω scans with κ offsets | h = −8→10 |
6696 measured reflections | k = −9→9 |
1601 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0443P] where P = (Fo2 + 2Fc2)/3 |
1601 reflections | (Δ/σ)max < 0.001 |
179 parameters | Δρmax = 0.17 e Å−3 |
1 restraint | Δρmin = −0.15 e Å−3 |
C15H22O4 | V = 681.1 (3) Å3 |
Mr = 266.33 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.251 (3) Å | µ = 0.09 mm−1 |
b = 7.239 (2) Å | T = 292 K |
c = 11.434 (2) Å | 0.20 × 0.09 × 0.08 mm |
β = 94.201 (5)° |
Nonius KappaCCD area-detector diffractometer | 1495 reflections with I > 2σ(I) |
6696 measured reflections | Rint = 0.042 |
1601 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.17 e Å−3 |
1601 reflections | Δρmin = −0.15 e Å−3 |
179 parameters |
Experimental. Melting points were determined on a Kofler-type apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer Spectrum BX spectrophotometer with KBr as support. The 1H-NMR spectra were obtained with a Brüker Advance DPX-400 at 400 MHz. The MS spectra were recorded on a VG AUTOSPEC FISON instrument. In the purification of the intermediates and final product column chromatography was carried out using Merck silica gel 0.065–0.2 mm. Melting point 473–475 K. IR cm-1: 3529 (O—H), 1769 (γ-lactone). 1H-NMR, δ (CDCl3): 3.96 (1H, dd, J=9.7 and 8.5 Hz, H6), 3.21 (1H, bs, H1), 3.03 (1H, bs, H3), 1.49 (3H, s, H15), 1.24 (3H, d, J= 6.8 Hz, H13), 1.21 (3H, s, H14). MS (m/z): 266.15 (M+, C15H22O4), 248.14 (M+– H2O). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6128 (2) | 0.3084 (3) | 0.41480 (13) | 0.0546 (5) | |
O2 | 0.51059 (16) | 0.2973 (2) | 0.58981 (11) | 0.0384 (4) | |
O3 | 0.4263 (2) | 0.0404 (3) | 0.90667 (14) | 0.0489 (4) | |
O4 | 0.0735 (3) | −0.0003 (3) | 0.84929 (18) | 0.0662 (6) | |
H4 | 0.164 (5) | −0.035 (7) | 0.855 (4) | 0.093 (15)* | |
C1 | 0.0892 (3) | 0.1905 (4) | 0.8793 (2) | 0.0509 (6) | |
H1 | −0.0187 | 0.2346 | 0.8966 | 0.061* | |
C2 | 0.2005 (3) | 0.2157 (5) | 0.98982 (19) | 0.0541 (6) | |
H2A | 0.179 | 0.3351 | 1.024 | 0.065* | |
H2B | 0.176 | 0.1214 | 1.0462 | 0.065* | |
C3 | 0.3763 (3) | 0.2043 (4) | 0.96754 (17) | 0.0445 (5) | |
H3 | 0.4521 | 0.2468 | 1.0319 | 0.053* | |
C4 | 0.4356 (2) | 0.2197 (3) | 0.84932 (16) | 0.0356 (4) | |
C5 | 0.3118 (2) | 0.2328 (3) | 0.74257 (15) | 0.0303 (4) | |
H5 | 0.2925 | 0.1061 | 0.7149 | 0.036* | |
C6 | 0.3554 (2) | 0.3442 (3) | 0.63683 (15) | 0.0316 (4) | |
H6 | 0.3543 | 0.4761 | 0.6561 | 0.038* | |
C7 | 0.2322 (2) | 0.3066 (3) | 0.53335 (16) | 0.0364 (4) | |
H7 | 0.2211 | 0.1723 | 0.5256 | 0.044* | |
C8 | 0.0672 (3) | 0.3830 (4) | 0.55853 (19) | 0.0475 (6) | |
H8A | −0.0119 | 0.3553 | 0.4939 | 0.057* | |
H8B | 0.0733 | 0.516 | 0.5679 | 0.057* | |
C9 | 0.0161 (2) | 0.2934 (4) | 0.67131 (19) | 0.0490 (6) | |
H9A | −0.0068 | 0.1639 | 0.6561 | 0.059* | |
H9B | −0.0837 | 0.351 | 0.6926 | 0.059* | |
C10 | 0.1444 (2) | 0.3084 (3) | 0.77649 (17) | 0.0385 (5) | |
C11 | 0.3227 (3) | 0.3750 (3) | 0.43019 (17) | 0.0395 (5) | |
H11 | 0.3129 | 0.5097 | 0.4256 | 0.047* | |
C12 | 0.4968 (3) | 0.3260 (3) | 0.47164 (16) | 0.0382 (4) | |
C13 | 0.2728 (4) | 0.2936 (5) | 0.31047 (19) | 0.0603 (7) | |
H13A | 0.3448 | 0.3376 | 0.2544 | 0.09* | |
H13B | 0.1635 | 0.3305 | 0.2868 | 0.09* | |
H13C | 0.2785 | 0.1613 | 0.3146 | 0.09* | |
C14 | 0.1588 (3) | 0.5107 (4) | 0.8180 (2) | 0.0560 (6) | |
H14A | 0.0679 | 0.5408 | 0.8623 | 0.084* | |
H14B | 0.1595 | 0.5908 | 0.7512 | 0.084* | |
H14C | 0.2578 | 0.5264 | 0.8665 | 0.084* | |
C15 | 0.6070 (3) | 0.2836 (5) | 0.83987 (19) | 0.0543 (7) | |
H15A | 0.6664 | 0.273 | 0.915 | 0.081* | |
H15B | 0.6066 | 0.4102 | 0.8148 | 0.081* | |
H15C | 0.6578 | 0.2086 | 0.7838 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0602 (10) | 0.0587 (10) | 0.0481 (8) | 0.0041 (9) | 0.0264 (7) | 0.0041 (9) |
O2 | 0.0331 (6) | 0.0470 (8) | 0.0366 (7) | 0.0030 (7) | 0.0118 (5) | 0.0026 (7) |
O3 | 0.0554 (9) | 0.0485 (10) | 0.0431 (8) | 0.0042 (8) | 0.0058 (6) | 0.0103 (7) |
O4 | 0.0588 (12) | 0.0673 (13) | 0.0729 (13) | −0.0278 (11) | 0.0077 (9) | 0.0140 (11) |
C1 | 0.0335 (10) | 0.0708 (18) | 0.0504 (12) | −0.0031 (12) | 0.0166 (9) | 0.0062 (12) |
C2 | 0.0484 (12) | 0.0761 (18) | 0.0400 (10) | −0.0032 (14) | 0.0186 (9) | 0.0033 (12) |
C3 | 0.0437 (11) | 0.0569 (15) | 0.0332 (9) | −0.0071 (11) | 0.0051 (8) | 0.0002 (10) |
C4 | 0.0323 (9) | 0.0401 (11) | 0.0350 (9) | 0.0002 (9) | 0.0069 (7) | 0.0001 (9) |
C5 | 0.0261 (8) | 0.0312 (9) | 0.0342 (9) | −0.0001 (8) | 0.0076 (6) | −0.0023 (8) |
C6 | 0.0293 (8) | 0.0328 (10) | 0.0336 (9) | 0.0012 (8) | 0.0080 (7) | −0.0007 (7) |
C7 | 0.0381 (10) | 0.0341 (10) | 0.0374 (9) | 0.0014 (9) | 0.0042 (7) | 0.0025 (9) |
C8 | 0.0364 (10) | 0.0569 (15) | 0.0489 (11) | 0.0073 (10) | −0.0006 (8) | 0.0046 (11) |
C9 | 0.0271 (8) | 0.0639 (15) | 0.0565 (12) | 0.0041 (10) | 0.0061 (8) | 0.0066 (12) |
C10 | 0.0286 (8) | 0.0460 (12) | 0.0422 (9) | 0.0023 (9) | 0.0112 (7) | 0.0010 (10) |
C11 | 0.0495 (11) | 0.0351 (10) | 0.0341 (9) | −0.0003 (9) | 0.0052 (8) | 0.0014 (8) |
C12 | 0.0457 (10) | 0.0329 (10) | 0.0374 (10) | −0.0004 (9) | 0.0127 (8) | 0.0014 (8) |
C13 | 0.0753 (16) | 0.0665 (17) | 0.0382 (11) | 0.0005 (15) | −0.0017 (10) | −0.0045 (13) |
C14 | 0.0557 (14) | 0.0527 (15) | 0.0622 (15) | 0.0166 (12) | 0.0215 (11) | −0.0093 (12) |
C15 | 0.0320 (9) | 0.089 (2) | 0.0418 (10) | −0.0093 (12) | 0.0040 (8) | 0.0017 (13) |
O1—C12 | 1.202 (2) | C7—C8 | 1.516 (3) |
O2—C12 | 1.364 (2) | C7—C11 | 1.524 (3) |
O2—C6 | 1.464 (2) | C7—H7 | 0.98 |
O3—C3 | 1.451 (3) | C8—C9 | 1.530 (3) |
O3—C4 | 1.459 (3) | C8—H8A | 0.97 |
O4—C1 | 1.427 (4) | C8—H8B | 0.97 |
O4—H4 | 0.78 (4) | C9—C10 | 1.547 (3) |
C1—C2 | 1.517 (3) | C9—H9A | 0.97 |
C1—C10 | 1.548 (3) | C9—H9B | 0.97 |
C1—H1 | 0.98 | C10—C14 | 1.541 (4) |
C2—C3 | 1.493 (3) | C11—C13 | 1.519 (3) |
C2—H2A | 0.97 | C11—C12 | 1.521 (3) |
C2—H2B | 0.97 | C11—H11 | 0.98 |
C3—C4 | 1.475 (3) | C13—H13A | 0.96 |
C3—H3 | 0.98 | C13—H13B | 0.96 |
C4—C15 | 1.500 (3) | C13—H13C | 0.96 |
C4—C5 | 1.536 (3) | C14—H14A | 0.96 |
C5—C6 | 1.518 (2) | C14—H14B | 0.96 |
C5—C10 | 1.561 (2) | C14—H14C | 0.96 |
C5—H5 | 0.98 | C15—H15A | 0.96 |
C6—C7 | 1.527 (3) | C15—H15B | 0.96 |
C6—H6 | 0.98 | C15—H15C | 0.96 |
C12—O2—C6 | 108.47 (14) | C7—C8—C9 | 108.19 (19) |
C3—O3—C4 | 60.93 (13) | C7—C8—H8A | 110.1 |
C1—O4—H4 | 103 (4) | C9—C8—H8A | 110.1 |
O4—C1—C2 | 110.8 (2) | C7—C8—H8B | 110.1 |
O4—C1—C10 | 112.2 (2) | C9—C8—H8B | 110.1 |
C2—C1—C10 | 111.9 (2) | H8A—C8—H8B | 108.4 |
O4—C1—H1 | 107.2 | C8—C9—C10 | 114.25 (18) |
C2—C1—H1 | 107.2 | C8—C9—H9A | 108.7 |
C10—C1—H1 | 107.2 | C10—C9—H9A | 108.7 |
C3—C2—C1 | 112.77 (17) | C8—C9—H9B | 108.7 |
C3—C2—H2A | 109 | C10—C9—H9B | 108.7 |
C1—C2—H2A | 109 | H9A—C9—H9B | 107.6 |
C3—C2—H2B | 109 | C14—C10—C9 | 109.8 (2) |
C1—C2—H2B | 109 | C14—C10—C1 | 108.05 (19) |
H2A—C2—H2B | 107.8 | C9—C10—C1 | 109.22 (19) |
O3—C3—C4 | 59.79 (13) | C14—C10—C5 | 111.13 (18) |
O3—C3—C2 | 116.2 (2) | C9—C10—C5 | 110.48 (16) |
C4—C3—C2 | 122.93 (18) | C1—C10—C5 | 108.08 (18) |
O3—C3—H3 | 115.4 | C13—C11—C12 | 112.21 (19) |
C4—C3—H3 | 115.4 | C13—C11—C7 | 117.1 (2) |
C2—C3—H3 | 115.4 | C12—C11—C7 | 100.87 (15) |
O3—C4—C3 | 59.28 (14) | C13—C11—H11 | 108.7 |
O3—C4—C15 | 112.81 (18) | C12—C11—H11 | 108.7 |
C3—C4—C15 | 117.85 (17) | C7—C11—H11 | 108.7 |
O3—C4—C5 | 111.03 (17) | O1—C12—O2 | 120.52 (19) |
C3—C4—C5 | 119.16 (16) | O1—C12—C11 | 128.83 (18) |
C15—C4—C5 | 119.95 (17) | O2—C12—C11 | 110.63 (15) |
C6—C5—C4 | 118.90 (15) | C11—C13—H13A | 109.5 |
C6—C5—C10 | 106.09 (15) | C11—C13—H13B | 109.5 |
C4—C5—C10 | 111.90 (15) | H13A—C13—H13B | 109.5 |
C6—C5—H5 | 106.4 | C11—C13—H13C | 109.5 |
C4—C5—H5 | 106.4 | H13A—C13—H13C | 109.5 |
C10—C5—H5 | 106.4 | H13B—C13—H13C | 109.5 |
O2—C6—C5 | 115.68 (15) | C10—C14—H14A | 109.5 |
O2—C6—C7 | 102.98 (14) | C10—C14—H14B | 109.5 |
C5—C6—C7 | 109.82 (16) | H14A—C14—H14B | 109.5 |
O2—C6—H6 | 109.4 | C10—C14—H14C | 109.5 |
C5—C6—H6 | 109.4 | H14A—C14—H14C | 109.5 |
C7—C6—H6 | 109.4 | H14B—C14—H14C | 109.5 |
C8—C7—C11 | 121.77 (19) | C4—C15—H15A | 109.5 |
C8—C7—C6 | 110.13 (17) | C4—C15—H15B | 109.5 |
C11—C7—C6 | 101.85 (16) | H15A—C15—H15B | 109.5 |
C8—C7—H7 | 107.4 | C4—C15—H15C | 109.5 |
C11—C7—H7 | 107.4 | H15A—C15—H15C | 109.5 |
C6—C7—H7 | 107.4 | H15B—C15—H15C | 109.5 |
O4—C1—C2—C3 | 79.3 (3) | C11—C7—C8—C9 | −176.7 (2) |
C10—C1—C2—C3 | −46.7 (3) | C6—C7—C8—C9 | −57.7 (3) |
C4—O3—C3—C2 | 114.5 (2) | C7—C8—C9—C10 | 52.5 (3) |
C1—C2—C3—O3 | −53.5 (3) | C8—C9—C10—C14 | 69.4 (3) |
C1—C2—C3—C4 | 16.1 (4) | C8—C9—C10—C1 | −172.3 (2) |
C3—O3—C4—C15 | 109.9 (2) | C8—C9—C10—C5 | −53.5 (3) |
C3—O3—C4—C5 | −112.26 (18) | O4—C1—C10—C14 | −179.6 (2) |
C2—C3—C4—O3 | −103.4 (3) | C2—C1—C10—C14 | −54.3 (3) |
O3—C3—C4—C15 | −101.3 (2) | O4—C1—C10—C9 | 61.0 (3) |
C2—C3—C4—C15 | 155.3 (3) | C2—C1—C10—C9 | −173.8 (2) |
O3—C3—C4—C5 | 98.4 (2) | O4—C1—C10—C5 | −59.3 (2) |
C2—C3—C4—C5 | −4.9 (4) | C2—C1—C10—C5 | 66.0 (3) |
O3—C4—C5—C6 | −146.38 (16) | C6—C5—C10—C14 | −65.2 (2) |
C3—C4—C5—C6 | 148.0 (2) | C4—C5—C10—C14 | 66.0 (2) |
C15—C4—C5—C6 | −11.9 (3) | C6—C5—C10—C9 | 57.0 (2) |
O3—C4—C5—C10 | 89.3 (2) | C4—C5—C10—C9 | −171.85 (19) |
C3—C4—C5—C10 | 23.7 (3) | C6—C5—C10—C1 | 176.44 (18) |
C15—C4—C5—C10 | −136.2 (2) | C4—C5—C10—C1 | −52.4 (2) |
C12—O2—C6—C5 | 148.07 (17) | C8—C7—C11—C13 | −81.2 (3) |
C12—O2—C6—C7 | 28.3 (2) | C6—C7—C11—C13 | 155.8 (2) |
C4—C5—C6—O2 | 52.5 (2) | C8—C7—C11—C12 | 156.7 (2) |
C10—C5—C6—O2 | 179.57 (16) | C6—C7—C11—C12 | 33.8 (2) |
C4—C5—C6—C7 | 168.51 (17) | C6—O2—C12—O1 | 175.0 (2) |
C10—C5—C6—C7 | −64.4 (2) | C6—O2—C12—C11 | −6.3 (2) |
O2—C6—C7—C8 | −169.05 (17) | C13—C11—C12—O1 | 34.9 (4) |
C5—C6—C7—C8 | 67.2 (2) | C7—C11—C12—O1 | 160.3 (3) |
O2—C6—C7—C11 | −38.5 (2) | C13—C11—C12—O2 | −143.7 (2) |
C5—C6—C7—C11 | −162.29 (16) | C7—C11—C12—O2 | −18.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.79 (4) | 2.27 (4) | 2.952 (3) | 146 (5) |
C9—H9A···O4 | 0.97 | 2.55 | 2.958 (3) | 105 |
C5—H5···O4 | 0.98 | 2.57 | 2.925 (3) | 101 |
C15—H15C···O2 | 0.96 | 2.53 | 2.913 (3) | 104 |
Experimental details
Crystal data | |
Chemical formula | C15H22O4 |
Mr | 266.33 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 292 |
a, b, c (Å) | 8.251 (3), 7.239 (2), 11.434 (2) |
β (°) | 94.201 (5) |
V (Å3) | 681.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.20 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6696, 1601, 1495 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.108, 1.13 |
No. of reflections | 1601 |
No. of parameters | 179 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.15 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.79 (4) | 2.27 (4) | 2.952 (3) | 146 (5) |
C9—H9A···O4 | 0.97 | 2.55 | 2.958 (3) | 105 |
C5—H5···O4 | 0.98 | 2.57 | 2.925 (3) | 101 |
C15—H15C···O2 | 0.96 | 2.53 | 2.913 (3) | 104 |
Acknowledgements
IB thanks the Spanish Research Council (CSIC) for providing a free-of-charge licence for the CSD system.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fraga, B. M. (2008). J. Nat. Prod. Rep. 25, 1180–1209. Web of Science CrossRef CAS Google Scholar
González, A. G., Galindo, A., Mansilla, H. & Gutierrez, A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 881–884. Google Scholar
Lindenmeyer, M. T., Hrenn, A., Kern, C., Castro, V., Murillo, R., Müller, S., Laufer, S., Schulte-Mönting, J., Siedle, B. & Merfort, I. (2006). Bioorg. Med. Chem. 14, 2487–2497. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ohno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). Tetrahedron Lett. 46, 8657–8660. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pillay, P., Vlegaar, R., Maharaj, V. J., Smith, P. J. & Lategan, C. A. (2007). J. Ethnopharmacol. 112, 71–76. Web of Science CrossRef PubMed CAS Google Scholar
Rychlewska, U., Holub, M., Bloszyk, E. & Drozdz, B. (1982). Collect. Czech. Chem. Commun. 47, 88–95. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Villar, A., Zafra-Polo, M. C., Nicoletti, M. & Galeffi, C. (1983). Phytochemistry, 22, 777–778. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sesquiterpene lactones constitute a large group of natural products (Fraga, 2008). The eudesmanolides are natural products belong to the sesquiterpene lactones composed of fifteen carbon atoms. Many of these compounds, natural or synthetics, are of particular interest because of their biological activity (Pillay, et al., 2007; Ohno, et al., 2005; Lindenmeyer, et al., 2006). We report in this article the synthesis and crystal structure of a novel eudesmanolide, the title compound, (I).
The structure of the title compound (Fig. 1) is stabilized by one O—H···O and three C—H···O intramolecular hydrogen bonds (Table 1). The structure of (I) consists of two trans-fused [C(5)—C(10)] six-membered rings and a trans-fused [at C(6)—C(7)] five-membered γ-lactone. The epoxy and hidroxyl group are α -oriented. The cyclohexane rings adopt half-chair [C1/C2/C3/C4/C5/C10] and chair [C5/C6/C7/C8/C9/C10] and the lactone ring is in an envelope conformation respectively, as shown by the Cremer & Pople (1975) puckering parameters [QT=0.525 (2) Å, θ =46.9 (2)°, ϕ=321.1 (4)°; QT=0.616 (2) Å, θ =8.81 (2)°, ϕ=56.3 (1)°; q2=0.382 (2) Å, ϕ2=244.5 (3)°, respectively].
The crystal structure of the title compound is isomorphous with erivanin (Rychlewska et al., 1982).