organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1777-o1778

3-Hydr­­oxy-3a,6,8c-tri­methyl­perhydro­oxireno[2′,3′:7,8]naphtho[1,2-b]furan-7(2H)-one

aDepartamento de Química, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and dInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 11 June 2009; accepted 29 June 2009; online 4 July 2009)

The title compound, C15H22O4, consists of two trans-fused six-membered rings and a trans-fused five-membered γ-lactone. The ep­oxy and hydroxyl groups are α-oriented. The cyclo­hexane rings adopt half-chair and chair conformations and the lactone ring is in an envelope conformation. The mol­ecular structure is stabilized by one O—H⋯O and three C—H⋯O intra­molecular hydrogen bonds.

Related literature

For background to sesquiterpene lactones, see: Fraga (2008[Fraga, B. M. (2008). J. Nat. Prod. Rep. 25, 1180-1209.]). For their biological activity, see: Pillay et al. (2007[Pillay, P., Vlegaar, R., Maharaj, V. J., Smith, P. J. & Lategan, C. A. (2007). J. Ethnopharmacol. 112, 71-76.]); Ohno et al. (2005[Ohno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). Tetrahedron Lett. 46, 8657-8660.]); Lindenmeyer et al. (2006[Lindenmeyer, M. T., Hrenn, A., Kern, C., Castro, V., Murillo, R., Müller, S., Laufer, S., Schulte-Mönting, J., Siedle, B. & Merfort, I. (2006). Bioorg. Med. Chem. 14, 2487-2497.]). For synthetic details, see: Villar et al. (1983[Villar, A., Zafra-Polo, M. C., Nicoletti, M. & Galeffi, C. (1983). Phytochemistry, 22, 777-778.]); González, et al. (1982[González, A. G., Galindo, A., Mansilla, H. & Gutierrez, A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 881-884.]). For a related structure, see: Rychlewska et al. (1982[Rychlewska, U., Holub, M., Bloszyk, E. & Drozdz, B. (1982). Collect. Czech. Chem. Commun. 47, 88-95.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O4

  • Mr = 266.33

  • Monoclinic, P 21

  • a = 8.251 (3) Å

  • b = 7.239 (2) Å

  • c = 11.434 (2) Å

  • β = 94.201 (5)°

  • V = 681.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.20 × 0.09 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 6696 measured reflections

  • 1601 independent reflections

  • 1495 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.13

  • 1601 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.79 (4) 2.27 (4) 2.952 (3) 146 (5)
C9—H9A⋯O4 0.97 2.55 2.958 (3) 105
C5—H5⋯O4 0.98 2.57 2.925 (3) 101
C15—H15C⋯O2 0.96 2.53 2.913 (3) 104

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sesquiterpene lactones constitute a large group of natural products (Fraga, 2008). The eudesmanolides are natural products belong to the sesquiterpene lactones composed of fifteen carbon atoms. Many of these compounds, natural or synthetics, are of particular interest because of their biological activity (Pillay, et al., 2007; Ohno, et al., 2005; Lindenmeyer, et al., 2006). We report in this article the synthesis and crystal structure of a novel eudesmanolide, the title compound, (I).

The structure of the title compound (Fig. 1) is stabilized by one O—H···O and three C—H···O intramolecular hydrogen bonds (Table 1). The structure of (I) consists of two trans-fused [C(5)—C(10)] six-membered rings and a trans-fused [at C(6)—C(7)] five-membered γ-lactone. The epoxy and hidroxyl group are α -oriented. The cyclohexane rings adopt half-chair [C1/C2/C3/C4/C5/C10] and chair [C5/C6/C7/C8/C9/C10] and the lactone ring is in an envelope conformation respectively, as shown by the Cremer & Pople (1975) puckering parameters [QT=0.525 (2) Å, θ =46.9 (2)°, ϕ=321.1 (4)°; QT=0.616 (2) Å, θ =8.81 (2)°, ϕ=56.3 (1)°; q2=0.382 (2) Å, ϕ2=244.5 (3)°, respectively].

The crystal structure of the title compound is isomorphous with erivanin (Rychlewska et al., 1982).

Related literature top

For background to sesquiterpene lactones, see: Fraga (2008). For their biological activity, see: Pillay et al. (2007); Ohno et al. (2005); Lindenmeyer et al. (2006). For synthetic details, see: Villar et al. (1983); González, et al. (1982). For a related structure, see: Rychlewska et al. (1982). For puckering paramters, see: Cremer & Pople (1975).

Experimental top

The title compound (I) was prepared by epoxidation of 1 with monoperoxyphthalic acid magnesium (MMPPA) at room temperature as shown in Fig. 2. In turn the product 1 was obtained by reduction of desoxyvulgarina(1-oxo-6β,7α,11β-H-eudesm-4-en-6,12-olide) (Villar et al., 1983), with sodium borohydride in ethanol (González, et al., 1982). Recrystallization from hexane/athyl acetate (3:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

Due to lack of sufficient anomalous dospersion effects, an absolute structure was not established. Therefore, Friedel pairs (634) were merged. The hydroxyl H4 atom was located in Fourier difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding with C—H = 0.98 Å for CH, 0.97 Å (CH2) or 0.96 Å (CH3) with Uiso(H) = 1.2 Ueq (C) (for CH, CH2) or Uiso(H) = 1.5Ueq(C) (for CH3).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Preparation of the title compound.
3-Hydroxy-3a,6,8c-trimethylperhydrooxireno[2',3':7,8]naphtho[1,2- b]furan-7(2H)-one top
Crystal data top
C15H22O4F(000) = 288
Mr = 266.33Dx = 1.299 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 1601 reflections
a = 8.251 (3) Åθ = 2.4–27.1°
b = 7.239 (2) ŵ = 0.09 mm1
c = 11.434 (2) ÅT = 292 K
β = 94.201 (5)°Block, colourless
V = 681.1 (3) Å30.20 × 0.09 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
1495 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.1°, θmin = 2.5°
ϕ scans, and ω scans with κ offsetsh = 810
6696 measured reflectionsk = 99
1601 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
1601 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C15H22O4V = 681.1 (3) Å3
Mr = 266.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.251 (3) ŵ = 0.09 mm1
b = 7.239 (2) ÅT = 292 K
c = 11.434 (2) Å0.20 × 0.09 × 0.08 mm
β = 94.201 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1495 reflections with I > 2σ(I)
6696 measured reflectionsRint = 0.042
1601 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.17 e Å3
1601 reflectionsΔρmin = 0.15 e Å3
179 parameters
Special details top

Experimental. Melting points were determined on a Kofler-type apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer Spectrum BX spectrophotometer with KBr as support. The 1H-NMR spectra were obtained with a Brüker Advance DPX-400 at 400 MHz. The MS spectra were recorded on a VG AUTOSPEC FISON instrument. In the purification of the intermediates and final product column chromatography was carried out using Merck silica gel 0.065–0.2 mm. Melting point 473–475 K. IR cm-1: 3529 (O—H), 1769 (γ-lactone). 1H-NMR, δ (CDCl3): 3.96 (1H, dd, J=9.7 and 8.5 Hz, H6), 3.21 (1H, bs, H1), 3.03 (1H, bs, H3), 1.49 (3H, s, H15), 1.24 (3H, d, J= 6.8 Hz, H13), 1.21 (3H, s, H14). MS (m/z): 266.15 (M+, C15H22O4), 248.14 (M+– H2O).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6128 (2)0.3084 (3)0.41480 (13)0.0546 (5)
O20.51059 (16)0.2973 (2)0.58981 (11)0.0384 (4)
O30.4263 (2)0.0404 (3)0.90667 (14)0.0489 (4)
O40.0735 (3)0.0003 (3)0.84929 (18)0.0662 (6)
H40.164 (5)0.035 (7)0.855 (4)0.093 (15)*
C10.0892 (3)0.1905 (4)0.8793 (2)0.0509 (6)
H10.01870.23460.89660.061*
C20.2005 (3)0.2157 (5)0.98982 (19)0.0541 (6)
H2A0.1790.33511.0240.065*
H2B0.1760.12141.04620.065*
C30.3763 (3)0.2043 (4)0.96754 (17)0.0445 (5)
H30.45210.24681.03190.053*
C40.4356 (2)0.2197 (3)0.84932 (16)0.0356 (4)
C50.3118 (2)0.2328 (3)0.74257 (15)0.0303 (4)
H50.29250.10610.71490.036*
C60.3554 (2)0.3442 (3)0.63683 (15)0.0316 (4)
H60.35430.47610.65610.038*
C70.2322 (2)0.3066 (3)0.53335 (16)0.0364 (4)
H70.22110.17230.52560.044*
C80.0672 (3)0.3830 (4)0.55853 (19)0.0475 (6)
H8A0.01190.35530.49390.057*
H8B0.07330.5160.56790.057*
C90.0161 (2)0.2934 (4)0.67131 (19)0.0490 (6)
H9A0.00680.16390.65610.059*
H9B0.08370.3510.69260.059*
C100.1444 (2)0.3084 (3)0.77649 (17)0.0385 (5)
C110.3227 (3)0.3750 (3)0.43019 (17)0.0395 (5)
H110.31290.50970.42560.047*
C120.4968 (3)0.3260 (3)0.47164 (16)0.0382 (4)
C130.2728 (4)0.2936 (5)0.31047 (19)0.0603 (7)
H13A0.34480.33760.25440.09*
H13B0.16350.33050.28680.09*
H13C0.27850.16130.31460.09*
C140.1588 (3)0.5107 (4)0.8180 (2)0.0560 (6)
H14A0.06790.54080.86230.084*
H14B0.15950.59080.75120.084*
H14C0.25780.52640.86650.084*
C150.6070 (3)0.2836 (5)0.83987 (19)0.0543 (7)
H15A0.66640.2730.9150.081*
H15B0.60660.41020.81480.081*
H15C0.65780.20860.78380.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0602 (10)0.0587 (10)0.0481 (8)0.0041 (9)0.0264 (7)0.0041 (9)
O20.0331 (6)0.0470 (8)0.0366 (7)0.0030 (7)0.0118 (5)0.0026 (7)
O30.0554 (9)0.0485 (10)0.0431 (8)0.0042 (8)0.0058 (6)0.0103 (7)
O40.0588 (12)0.0673 (13)0.0729 (13)0.0278 (11)0.0077 (9)0.0140 (11)
C10.0335 (10)0.0708 (18)0.0504 (12)0.0031 (12)0.0166 (9)0.0062 (12)
C20.0484 (12)0.0761 (18)0.0400 (10)0.0032 (14)0.0186 (9)0.0033 (12)
C30.0437 (11)0.0569 (15)0.0332 (9)0.0071 (11)0.0051 (8)0.0002 (10)
C40.0323 (9)0.0401 (11)0.0350 (9)0.0002 (9)0.0069 (7)0.0001 (9)
C50.0261 (8)0.0312 (9)0.0342 (9)0.0001 (8)0.0076 (6)0.0023 (8)
C60.0293 (8)0.0328 (10)0.0336 (9)0.0012 (8)0.0080 (7)0.0007 (7)
C70.0381 (10)0.0341 (10)0.0374 (9)0.0014 (9)0.0042 (7)0.0025 (9)
C80.0364 (10)0.0569 (15)0.0489 (11)0.0073 (10)0.0006 (8)0.0046 (11)
C90.0271 (8)0.0639 (15)0.0565 (12)0.0041 (10)0.0061 (8)0.0066 (12)
C100.0286 (8)0.0460 (12)0.0422 (9)0.0023 (9)0.0112 (7)0.0010 (10)
C110.0495 (11)0.0351 (10)0.0341 (9)0.0003 (9)0.0052 (8)0.0014 (8)
C120.0457 (10)0.0329 (10)0.0374 (10)0.0004 (9)0.0127 (8)0.0014 (8)
C130.0753 (16)0.0665 (17)0.0382 (11)0.0005 (15)0.0017 (10)0.0045 (13)
C140.0557 (14)0.0527 (15)0.0622 (15)0.0166 (12)0.0215 (11)0.0093 (12)
C150.0320 (9)0.089 (2)0.0418 (10)0.0093 (12)0.0040 (8)0.0017 (13)
Geometric parameters (Å, º) top
O1—C121.202 (2)C7—C81.516 (3)
O2—C121.364 (2)C7—C111.524 (3)
O2—C61.464 (2)C7—H70.98
O3—C31.451 (3)C8—C91.530 (3)
O3—C41.459 (3)C8—H8A0.97
O4—C11.427 (4)C8—H8B0.97
O4—H40.78 (4)C9—C101.547 (3)
C1—C21.517 (3)C9—H9A0.97
C1—C101.548 (3)C9—H9B0.97
C1—H10.98C10—C141.541 (4)
C2—C31.493 (3)C11—C131.519 (3)
C2—H2A0.97C11—C121.521 (3)
C2—H2B0.97C11—H110.98
C3—C41.475 (3)C13—H13A0.96
C3—H30.98C13—H13B0.96
C4—C151.500 (3)C13—H13C0.96
C4—C51.536 (3)C14—H14A0.96
C5—C61.518 (2)C14—H14B0.96
C5—C101.561 (2)C14—H14C0.96
C5—H50.98C15—H15A0.96
C6—C71.527 (3)C15—H15B0.96
C6—H60.98C15—H15C0.96
C12—O2—C6108.47 (14)C7—C8—C9108.19 (19)
C3—O3—C460.93 (13)C7—C8—H8A110.1
C1—O4—H4103 (4)C9—C8—H8A110.1
O4—C1—C2110.8 (2)C7—C8—H8B110.1
O4—C1—C10112.2 (2)C9—C8—H8B110.1
C2—C1—C10111.9 (2)H8A—C8—H8B108.4
O4—C1—H1107.2C8—C9—C10114.25 (18)
C2—C1—H1107.2C8—C9—H9A108.7
C10—C1—H1107.2C10—C9—H9A108.7
C3—C2—C1112.77 (17)C8—C9—H9B108.7
C3—C2—H2A109C10—C9—H9B108.7
C1—C2—H2A109H9A—C9—H9B107.6
C3—C2—H2B109C14—C10—C9109.8 (2)
C1—C2—H2B109C14—C10—C1108.05 (19)
H2A—C2—H2B107.8C9—C10—C1109.22 (19)
O3—C3—C459.79 (13)C14—C10—C5111.13 (18)
O3—C3—C2116.2 (2)C9—C10—C5110.48 (16)
C4—C3—C2122.93 (18)C1—C10—C5108.08 (18)
O3—C3—H3115.4C13—C11—C12112.21 (19)
C4—C3—H3115.4C13—C11—C7117.1 (2)
C2—C3—H3115.4C12—C11—C7100.87 (15)
O3—C4—C359.28 (14)C13—C11—H11108.7
O3—C4—C15112.81 (18)C12—C11—H11108.7
C3—C4—C15117.85 (17)C7—C11—H11108.7
O3—C4—C5111.03 (17)O1—C12—O2120.52 (19)
C3—C4—C5119.16 (16)O1—C12—C11128.83 (18)
C15—C4—C5119.95 (17)O2—C12—C11110.63 (15)
C6—C5—C4118.90 (15)C11—C13—H13A109.5
C6—C5—C10106.09 (15)C11—C13—H13B109.5
C4—C5—C10111.90 (15)H13A—C13—H13B109.5
C6—C5—H5106.4C11—C13—H13C109.5
C4—C5—H5106.4H13A—C13—H13C109.5
C10—C5—H5106.4H13B—C13—H13C109.5
O2—C6—C5115.68 (15)C10—C14—H14A109.5
O2—C6—C7102.98 (14)C10—C14—H14B109.5
C5—C6—C7109.82 (16)H14A—C14—H14B109.5
O2—C6—H6109.4C10—C14—H14C109.5
C5—C6—H6109.4H14A—C14—H14C109.5
C7—C6—H6109.4H14B—C14—H14C109.5
C8—C7—C11121.77 (19)C4—C15—H15A109.5
C8—C7—C6110.13 (17)C4—C15—H15B109.5
C11—C7—C6101.85 (16)H15A—C15—H15B109.5
C8—C7—H7107.4C4—C15—H15C109.5
C11—C7—H7107.4H15A—C15—H15C109.5
C6—C7—H7107.4H15B—C15—H15C109.5
O4—C1—C2—C379.3 (3)C11—C7—C8—C9176.7 (2)
C10—C1—C2—C346.7 (3)C6—C7—C8—C957.7 (3)
C4—O3—C3—C2114.5 (2)C7—C8—C9—C1052.5 (3)
C1—C2—C3—O353.5 (3)C8—C9—C10—C1469.4 (3)
C1—C2—C3—C416.1 (4)C8—C9—C10—C1172.3 (2)
C3—O3—C4—C15109.9 (2)C8—C9—C10—C553.5 (3)
C3—O3—C4—C5112.26 (18)O4—C1—C10—C14179.6 (2)
C2—C3—C4—O3103.4 (3)C2—C1—C10—C1454.3 (3)
O3—C3—C4—C15101.3 (2)O4—C1—C10—C961.0 (3)
C2—C3—C4—C15155.3 (3)C2—C1—C10—C9173.8 (2)
O3—C3—C4—C598.4 (2)O4—C1—C10—C559.3 (2)
C2—C3—C4—C54.9 (4)C2—C1—C10—C566.0 (3)
O3—C4—C5—C6146.38 (16)C6—C5—C10—C1465.2 (2)
C3—C4—C5—C6148.0 (2)C4—C5—C10—C1466.0 (2)
C15—C4—C5—C611.9 (3)C6—C5—C10—C957.0 (2)
O3—C4—C5—C1089.3 (2)C4—C5—C10—C9171.85 (19)
C3—C4—C5—C1023.7 (3)C6—C5—C10—C1176.44 (18)
C15—C4—C5—C10136.2 (2)C4—C5—C10—C152.4 (2)
C12—O2—C6—C5148.07 (17)C8—C7—C11—C1381.2 (3)
C12—O2—C6—C728.3 (2)C6—C7—C11—C13155.8 (2)
C4—C5—C6—O252.5 (2)C8—C7—C11—C12156.7 (2)
C10—C5—C6—O2179.57 (16)C6—C7—C11—C1233.8 (2)
C4—C5—C6—C7168.51 (17)C6—O2—C12—O1175.0 (2)
C10—C5—C6—C764.4 (2)C6—O2—C12—C116.3 (2)
O2—C6—C7—C8169.05 (17)C13—C11—C12—O134.9 (4)
C5—C6—C7—C867.2 (2)C7—C11—C12—O1160.3 (3)
O2—C6—C7—C1138.5 (2)C13—C11—C12—O2143.7 (2)
C5—C6—C7—C11162.29 (16)C7—C11—C12—O218.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.79 (4)2.27 (4)2.952 (3)146 (5)
C9—H9A···O40.972.552.958 (3)105
C5—H5···O40.982.572.925 (3)101
C15—H15C···O20.962.532.913 (3)104

Experimental details

Crystal data
Chemical formulaC15H22O4
Mr266.33
Crystal system, space groupMonoclinic, P21
Temperature (K)292
a, b, c (Å)8.251 (3), 7.239 (2), 11.434 (2)
β (°) 94.201 (5)
V3)681.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.09 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6696, 1601, 1495
Rint0.042
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.13
No. of reflections1601
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.79 (4)2.27 (4)2.952 (3)146 (5)
C9—H9A···O40.972.552.958 (3)105
C5—H5···O40.982.572.925 (3)101
C15—H15C···O20.962.532.913 (3)104
 

Acknowledgements

IB thanks the Spanish Research Council (CSIC) for providing a free-of-charge licence for the CSD system.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFraga, B. M. (2008). J. Nat. Prod. Rep. 25, 1180–1209.  Web of Science CrossRef CAS Google Scholar
First citationGonzález, A. G., Galindo, A., Mansilla, H. & Gutierrez, A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 881–884.  Google Scholar
First citationLindenmeyer, M. T., Hrenn, A., Kern, C., Castro, V., Murillo, R., Müller, S., Laufer, S., Schulte-Mönting, J., Siedle, B. & Merfort, I. (2006). Bioorg. Med. Chem. 14, 2487–2497.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOhno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). Tetrahedron Lett. 46, 8657–8660.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPillay, P., Vlegaar, R., Maharaj, V. J., Smith, P. J. & Lategan, C. A. (2007). J. Ethnopharmacol. 112, 71–76.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRychlewska, U., Holub, M., Bloszyk, E. & Drozdz, B. (1982). Collect. Czech. Chem. Commun. 47, 88–95.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillar, A., Zafra-Polo, M. C., Nicoletti, M. & Galeffi, C. (1983). Phytochemistry, 22, 777–778.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1777-o1778
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds