organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­droxy­benzohydrazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: rifat_jamal@yahoo.com

(Received 17 June 2009; accepted 29 June 2009; online 4 July 2009)

In the title compound, C7H8N2O2, the mean planes of the benzene ring and the planar hydrazide group are inclined at 25.75 (6)° with respect to each other. The structure is stabilized by inter­molecular N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For related structures see: Ashiq, Jamal et al. (2008[Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci X, 24, 103-104.], 2009[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.]); Hanif et al. (2007[Hanif, M., Qadeer, G., Rama, N. H., Rafiq, M. & Ružička, A. (2007). Acta Cryst. E63, o4829.]); Jamal et al. (2008[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.]); Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]). For the biological activity of hydrazides, see: Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); Ashiq, Ara et al. (2008[Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.]); Maqsood et al. (2006[Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37-42.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O2

  • Mr = 152.15

  • Monoclinic, P 21 /c

  • a = 5.0587 (2) Å

  • b = 17.2149 (9) Å

  • c = 7.8178 (5) Å

  • β = 93.489 (2)°

  • V = 679.55 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.32 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.992

  • 7324 measured reflections

  • 1697 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.118

  • S = 1.06

  • 1697 reflections

  • 107 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.13 2.9243 (14) 153
O1—H1A⋯N2ii 0.82 1.98 2.7852 (16) 174
N2—H12⋯O1iii 0.89 (2) 2.37 (2) 3.223 (2) 160
N2—H22⋯O2iv 0.90 (2) 2.22 (2) 3.056 (2) 155
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 4-hydroxybenzohydrazide, we undertook the synthesis of the title compound, (I), and report its crystal structure in this paper. The title compound was found to be antifungal (Maqsood et al., 2006). The crystal structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008), para-iodo (Jamal et al., 2008) and para-methoxy (Ashiq, Jamal et al., 2009) analogues of (I) have already been reported. The structure of (I) is isomorphous with its 3-hydroxy analogue (Hanif et al., 2007).

The molecular structure of (I) has been presented in Fig. 1. The bond distances and bond angles in (I) are similar to the corresponding distances and angles reported in the structures quoted above. In (I), the mean-planes of the benzene ring (C1–C6) and planar hydrazide group (N1/N2/O2/C7) are inclined at 25.75 (6)° with respect to each other. The molecular packing diagram (Fig. 2) shows the presence of four intermolecular hydrogen bonds of the type N—H···O and O—H···N (details are given in Table 1).

Related literature top

For related structures see: Ashiq, Jamal et al. (2008, 2009); Hanif et al. (2007); Jamal et al. (2008); Kallel et al. (1992); Saraogi et al. (2002). For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008); Maqsood et al. (2006).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-4-hydroxybenzoate (3.32 g, 20 mmol) in 75 ml e thanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 4-hydroxybenzohydrazide (yield 65%) (Maqsood et al., 2006).

Refinement top

H atoms were positioned geometrically, with aromatic C—H, O—H and N1—H1 distances 0.93, 0.82 and 0.86 Å, respectively, and constrained to ride on their parent atoms. The H-atoms attached to N2 atom were taken from Fourier synthesis and their coordinates were refined. The thermal parameter of H-atoms of was taken 1.2 times the equivalent isotropic displacement parameters of their parent C and N-atoms and 1.5 times the O-atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound with the ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown by dashed lines.
4-Hydroxybenzohydrazide top
Crystal data top
C7H8N2O2F(000) = 320
Mr = 152.15Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2993 reflections
a = 5.0587 (2) Åθ = 2.9–28.3°
b = 17.2149 (9) ŵ = 0.11 mm1
c = 7.8178 (5) ÅT = 296 K
β = 93.489 (2)°Needle, colourless
V = 679.55 (6) Å30.32 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEX2 CCD
diffractometer
1697 independent reflections
Radiation source: fine-focus sealed tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.965, Tmax = 0.992k = 2223
7324 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1539P]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H8N2O2V = 679.55 (6) Å3
Mr = 152.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0587 (2) ŵ = 0.11 mm1
b = 17.2149 (9) ÅT = 296 K
c = 7.8178 (5) Å0.32 × 0.18 × 0.12 mm
β = 93.489 (2)°
Data collection top
Bruker Kappa APEX2 CCD
diffractometer
1697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1348 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.992Rint = 0.023
7324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
1697 reflectionsΔρmin = 0.20 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7565 (2)0.04052 (5)0.14740 (17)0.0478 (3)
H1A0.89460.02910.20200.072*
O20.36833 (17)0.38981 (5)0.10180 (14)0.0364 (3)
N10.8045 (2)0.40995 (6)0.15266 (16)0.0331 (3)
H10.96060.39000.15540.040*
N20.7783 (2)0.49074 (6)0.1772 (2)0.0381 (3)
H120.647 (4)0.4969 (10)0.247 (2)0.046*
H220.736 (3)0.5124 (10)0.075 (2)0.046*
C10.6499 (2)0.27877 (7)0.12927 (16)0.0244 (3)
C20.4705 (2)0.22850 (7)0.04589 (17)0.0299 (3)
H20.32170.24860.01450.036*
C30.5095 (3)0.14912 (8)0.05121 (18)0.0335 (3)
H30.38920.11610.00660.040*
C40.7289 (3)0.11891 (7)0.14320 (18)0.0304 (3)
C50.9081 (2)0.16847 (7)0.22869 (19)0.0325 (3)
H51.05450.14840.29150.039*
C60.8685 (2)0.24751 (7)0.22038 (18)0.0307 (3)
H60.99040.28050.27680.037*
C70.5947 (2)0.36334 (7)0.12527 (16)0.0255 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0407 (6)0.0216 (5)0.0792 (9)0.0012 (4)0.0124 (5)0.0027 (5)
O20.0201 (4)0.0278 (5)0.0605 (7)0.0024 (3)0.0032 (4)0.0034 (4)
N10.0203 (5)0.0213 (5)0.0574 (7)0.0009 (4)0.0008 (5)0.0007 (5)
N20.0305 (6)0.0206 (5)0.0627 (9)0.0015 (4)0.0020 (6)0.0009 (5)
C10.0202 (5)0.0231 (5)0.0299 (6)0.0007 (4)0.0011 (4)0.0016 (5)
C20.0238 (6)0.0277 (6)0.0372 (7)0.0002 (4)0.0061 (5)0.0024 (5)
C30.0299 (6)0.0277 (6)0.0418 (8)0.0046 (5)0.0057 (5)0.0017 (5)
C40.0288 (6)0.0208 (6)0.0418 (7)0.0002 (5)0.0037 (5)0.0024 (5)
C50.0240 (6)0.0274 (6)0.0450 (8)0.0033 (5)0.0061 (5)0.0045 (5)
C60.0238 (6)0.0266 (6)0.0408 (7)0.0009 (5)0.0067 (5)0.0006 (5)
C70.0210 (5)0.0241 (6)0.0311 (6)0.0011 (4)0.0004 (4)0.0013 (5)
Geometric parameters (Å, º) top
O1—C41.3569 (14)C1—C71.4824 (16)
O1—H1A0.8200C2—C31.3809 (17)
O2—C71.2356 (14)C2—H20.9300
N1—C71.3376 (15)C3—C41.3866 (18)
N1—N21.4113 (15)C3—H30.9300
N1—H10.8600C4—C51.3864 (18)
N2—H120.89 (2)C5—C61.3762 (17)
N2—H220.90 (2)C5—H50.9300
C1—C61.3870 (17)C6—H60.9300
C1—C21.3876 (17)
C4—O1—H1A109.5C2—C3—H3120.2
C7—N1—N2122.18 (10)C4—C3—H3120.2
C7—N1—H1118.9O1—C4—C5122.50 (12)
N2—N1—H1118.9O1—C4—C3117.60 (12)
N1—N2—H12106.3 (11)C5—C4—C3119.90 (12)
N1—N2—H22108.1 (11)C6—C5—C4119.78 (12)
H12—N2—H22110.4 (17)C6—C5—H5120.1
C6—C1—C2118.52 (11)C4—C5—H5120.1
C6—C1—C7122.35 (11)C5—C6—C1121.13 (12)
C2—C1—C7119.05 (11)C5—C6—H6119.4
C3—C2—C1120.98 (12)C1—C6—H6119.4
C3—C2—H2119.5O2—C7—N1121.45 (11)
C1—C2—H2119.5O2—C7—C1122.48 (11)
C2—C3—C4119.68 (12)N1—C7—C1116.04 (10)
C6—C1—C2—C30.8 (2)C2—C1—C6—C50.0 (2)
C7—C1—C2—C3177.79 (12)C7—C1—C6—C5176.81 (12)
C1—C2—C3—C41.0 (2)N2—N1—C7—O27.9 (2)
C2—C3—C4—O1178.80 (12)N2—N1—C7—C1170.63 (12)
C2—C3—C4—C50.2 (2)C6—C1—C7—O2152.94 (13)
O1—C4—C5—C6179.61 (13)C2—C1—C7—O223.90 (18)
C3—C4—C5—C60.6 (2)C6—C1—C7—N125.57 (18)
C4—C5—C6—C10.8 (2)C2—C1—C7—N1157.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.132.9243 (14)153
O1—H1A···N2ii0.821.982.7852 (16)174
N2—H12···O1iii0.89 (2)2.37 (2)3.223 (2)160
N2—H22···O2iv0.90 (2)2.22 (2)3.056 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H8N2O2
Mr152.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.0587 (2), 17.2149 (9), 7.8178 (5)
β (°) 93.489 (2)
V3)679.55 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.18 × 0.12
Data collection
DiffractometerBruker Kappa APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
7324, 1697, 1348
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.06
No. of reflections1697
No. of parameters107
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.86002.1292.9243 (14)153
O1—H1A···N2ii0.82001.9802.7852 (16)174
N2—H12···O1iii0.89 (2)2.37 (2)3.223 (2)160
N2—H22···O2iv0.90 (2)2.22 (2)3.056 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and Bana International for their support in collecting the crystallographic data.

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci X, 24, 103–104.  CSD CrossRef Google Scholar
First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHanif, M., Qadeer, G., Rama, N. H., Rafiq, M. & Ružička, A. (2007). Acta Cryst. E63, o4829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationMaqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37–42.  Web of Science CrossRef CAS Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds