metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II) sulfate

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: imce18@163.com

(Received 19 June 2009; accepted 28 June 2009; online 4 July 2009)

The asymmetric unit of the title compound, [Zn(C12H12N2)(H2O)4]SO4, consists of a ZnII complex cation, a sulfate anion and four mol­ecules of water coordinated to the ZnII atom. The ZnII complex cation, with approximate twofold symmetry, displays a slightly distorted octa­hedral geometry around the ZnII atom, which is coordinated by two N atoms from a 5,5′-dimethyl-2,2′-bipyridine ligand and by the O atoms of four water mol­ecules. In the crystal, O—H⋯O hydrogen bonds help to establish the packing.

Related literature

For related structures, see: Schubert, Eschbaumer et al. (1999[Schubert, U. S., Eschbaumer, C. & Hochwimmer, G. (1999). Synthesis, pp. 779-782.]); Schubert, Hochwimmer et al. (1999[Schubert, U. S., Hochwimmer, G., Spindler, C. & Nuyken, O. (1999). Macromol. Rapid Commun. 20, 351-355.]); Shi et al. (2009[Shi, W.-J. (2009). Acta Cryst. E65, m653.]); Zhang et al. (2009[Zhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.]); Momeni et al. (2009[Momeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615-m616.]); Yang et al. (2001[Yang, X. J., Janiak, C., Heinze, J., Drepper, F. & Mayer, P. (2001). Inorg. Chim. Acta, 318, 103-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H12N2)(H2O)4]SO4

  • Mr = 417.73

  • Monoclinic, P 21 /c

  • a = 9.5648 (17) Å

  • b = 9.6050 (17) Å

  • c = 18.477 (3) Å

  • β = 102.453 (4)°

  • V = 1657.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 296 K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.683

  • 9462 measured reflections

  • 3263 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.04

  • 3263 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H4WB⋯O6i 0.85 1.84 2.695 (3) 179
O4W—H4WA⋯O5 0.85 1.87 2.722 (3) 178
O3W—H3WB⋯O5ii 0.85 1.90 2.748 (3) 178
O3W—H3WA⋯O6 0.85 1.96 2.804 (3) 170
O2W—H2WB⋯O8i 0.85 1.99 2.831 (3) 170
O2W—H2WA⋯O7iii 0.85 1.92 2.766 (3) 173
O1W—H1WB⋯O8iii 0.85 1.87 2.717 (3) 175
O1W—H1WA⋯O7ii 0.85 1.93 2.772 (3) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to structural characterization of 5,5'-dimethyl-2,2'-bipyridine complexes (Schubert, Eschbaumer et al. 1999; Schubert, Hochwimmer et al. 1999; Yang et al., 2001) we present here the crystal structure of the title complex, [ZnL(H2O)4].SO4 (L = 5,5'-dimethyl-2,2'-bipyridine).

The molecular structure of the title compound (Fig. 1) is made up of a [ZnL(H2O)4]2+ cation and a sulfate anion; the cation shows an approximate two fold rotational symmetry. The Zinc atom is coordinated totwo N atoms of a 5,5'-dimethyl-2,2'-bipyridine ligand and four aqua ligands to form distorted octahedral geometry.

With O—H···O and O—H···S hydrogen bonds (Table 1), a three-dimensional network is formed as shown in Fig. 2.

Related literature top

For related structures, see: Schubert, Eschbaumer et al. (1999); Schubert, Hochwimmer et al. (1999); Shi et al. (2009); Zhang et al. (2009); Momeni et al. (2009); Kim et al. (2009).

For related literature, see: Yang et al. (2001).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 5,5'-dimethyl-2,2'-bipyridine (0.2 mmol), ZnSO4 (0.2 mmol) and one drop of Et3N (pH 8–9) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.96 Å (methyl CH3), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) otherwise.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.
Tetraaqua(5,5'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) sulfate top
Crystal data top
[Zn(C12H12N2)(H2O)4]SO4F(000) = 864
Mr = 417.73Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4417 reflections
a = 9.5648 (17) Åθ = 2.2–27.9°
b = 9.6050 (17) ŵ = 1.65 mm1
c = 18.477 (3) ÅT = 296 K
β = 102.453 (4)°Block, colourless
V = 1657.5 (5) Å30.30 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3263 independent reflections
Radiation source: fine-focus sealed tube2648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.637, Tmax = 0.683k = 1110
9462 measured reflectionsl = 2213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
3263 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn(C12H12N2)(H2O)4]SO4V = 1657.5 (5) Å3
Mr = 417.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5648 (17) ŵ = 1.65 mm1
b = 9.6050 (17) ÅT = 296 K
c = 18.477 (3) Å0.30 × 0.26 × 0.25 mm
β = 102.453 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2648 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.683Rint = 0.085
9462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3263 reflectionsΔρmin = 0.40 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27251 (3)0.86942 (3)0.804800 (16)0.02610 (12)
S10.74896 (6)0.86596 (7)0.74789 (4)0.02499 (17)
N10.4185 (2)0.7784 (2)0.89612 (12)0.0321 (5)
N20.2216 (2)0.9768 (2)0.89671 (12)0.0324 (5)
O1W0.1234 (2)0.7150 (2)0.80803 (15)0.0632 (7)
H1WA0.14000.62810.81250.076*
H1WB0.03360.72680.80180.076*
O2W0.12257 (18)0.9747 (2)0.72531 (10)0.0378 (5)
H2WA0.03290.96060.71300.045*
H2WB0.13811.05860.71460.045*
O3W0.33946 (19)0.7568 (2)0.72175 (10)0.0347 (5)
H3WA0.42030.77430.71180.042*
H3WB0.32640.66930.71820.042*
O4W0.4183 (2)1.0182 (2)0.78745 (13)0.0486 (6)
H4WA0.50661.00520.78840.058*
H4WB0.40491.10530.79010.058*
O50.70202 (19)0.9743 (2)0.79426 (10)0.0335 (4)
O60.62104 (18)0.7951 (2)0.70442 (10)0.0343 (4)
O70.83003 (19)0.9308 (2)0.69779 (11)0.0359 (5)
O80.83933 (19)0.7631 (2)0.79580 (10)0.0358 (5)
C10.5164 (3)0.6810 (3)0.89163 (17)0.0369 (7)
H1A0.52330.64980.84490.044*
C20.6085 (3)0.6240 (3)0.95322 (17)0.0379 (7)
C30.7185 (3)0.5184 (4)0.9430 (2)0.0527 (9)
H3A0.67730.45590.90360.079*
H3B0.74940.46670.98810.079*
H3C0.79910.56520.93080.079*
C40.5934 (3)0.6713 (3)1.02187 (17)0.0409 (7)
H4A0.65110.63511.06480.049*
C50.4932 (3)0.7720 (3)1.02696 (15)0.0393 (7)
H50.48430.80431.07320.047*
C60.4054 (3)0.8254 (3)0.96315 (15)0.0311 (6)
C70.2972 (3)0.9349 (3)0.96385 (15)0.0303 (6)
C80.2708 (3)0.9936 (3)1.02828 (16)0.0399 (7)
H80.32140.96341.07430.048*
C90.1693 (3)1.0966 (3)1.02349 (18)0.0419 (7)
H90.15171.13601.06660.050*
C100.0931 (3)1.1423 (3)0.95547 (18)0.0384 (7)
C110.0155 (4)1.2571 (4)0.9464 (2)0.0544 (9)
H11A0.05021.26650.99110.082*
H11B0.09381.23530.90600.082*
H11C0.02811.34280.93620.082*
C120.1239 (3)1.0770 (3)0.89353 (17)0.0371 (7)
H120.07321.10480.84700.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01825 (17)0.02401 (18)0.0354 (2)0.00040 (12)0.00430 (11)0.00115 (13)
S10.0161 (3)0.0206 (3)0.0387 (4)0.0001 (2)0.0068 (2)0.0004 (3)
N10.0287 (12)0.0324 (12)0.0335 (13)0.0039 (10)0.0029 (9)0.0026 (11)
N20.0292 (12)0.0330 (12)0.0359 (14)0.0003 (10)0.0089 (10)0.0031 (11)
O1W0.0231 (11)0.0266 (12)0.143 (2)0.0025 (10)0.0252 (12)0.0011 (13)
O2W0.0200 (9)0.0340 (11)0.0553 (13)0.0050 (8)0.0006 (8)0.0072 (10)
O3W0.0266 (10)0.0263 (10)0.0534 (12)0.0023 (8)0.0134 (8)0.0075 (9)
O4W0.0229 (10)0.0246 (10)0.1025 (18)0.0007 (9)0.0230 (10)0.0024 (11)
O50.0294 (10)0.0277 (10)0.0452 (12)0.0053 (8)0.0116 (8)0.0061 (9)
O60.0203 (9)0.0336 (11)0.0478 (12)0.0079 (8)0.0050 (8)0.0051 (9)
O70.0282 (10)0.0343 (11)0.0480 (12)0.0060 (9)0.0148 (8)0.0016 (9)
O80.0270 (10)0.0270 (10)0.0522 (13)0.0076 (8)0.0058 (8)0.0053 (9)
C10.0317 (15)0.0394 (16)0.0392 (17)0.0061 (13)0.0064 (12)0.0003 (14)
C20.0318 (15)0.0325 (16)0.0469 (19)0.0001 (13)0.0033 (12)0.0034 (14)
C30.0392 (18)0.052 (2)0.064 (2)0.0148 (16)0.0058 (14)0.0063 (18)
C40.0316 (16)0.0439 (17)0.0438 (19)0.0053 (14)0.0006 (12)0.0127 (15)
C50.0425 (17)0.0427 (17)0.0320 (17)0.0004 (15)0.0062 (12)0.0031 (14)
C60.0264 (14)0.0307 (14)0.0361 (16)0.0012 (12)0.0065 (11)0.0012 (13)
C70.0261 (14)0.0304 (14)0.0340 (16)0.0036 (12)0.0057 (11)0.0008 (12)
C80.0412 (17)0.0450 (18)0.0337 (18)0.0020 (15)0.0083 (13)0.0008 (14)
C90.0440 (18)0.0430 (17)0.0437 (19)0.0030 (15)0.0205 (14)0.0076 (15)
C100.0296 (15)0.0363 (16)0.0520 (19)0.0004 (13)0.0149 (13)0.0077 (14)
C110.049 (2)0.049 (2)0.068 (2)0.0133 (17)0.0188 (16)0.0089 (17)
C120.0306 (15)0.0380 (16)0.0417 (17)0.0036 (13)0.0053 (12)0.0017 (14)
Geometric parameters (Å, º) top
Zn1—O1W2.068 (2)C1—H1A0.9300
Zn1—O4W2.0693 (19)C2—C41.384 (4)
Zn1—O2W2.0806 (18)C2—C31.502 (4)
Zn1—O3W2.0880 (17)C3—H3A0.9600
Zn1—N22.131 (2)C3—H3B0.9600
Zn1—N12.132 (2)C3—H3C0.9600
S1—O71.4682 (19)C4—C51.379 (4)
S1—O81.4756 (19)C4—H4A0.9300
S1—O61.4772 (19)C5—C61.389 (4)
S1—O51.4779 (19)C5—H50.9300
N1—C11.339 (3)C6—C71.477 (4)
N1—C61.349 (3)C7—C81.388 (4)
N2—C121.334 (4)C8—C91.376 (4)
N2—C71.355 (3)C8—H80.9300
O1W—H1WA0.8496C9—C101.381 (4)
O1W—H1WB0.8495C9—H90.9300
O2W—H2WA0.8497C10—C121.392 (4)
O2W—H2WB0.8497C10—C111.499 (4)
O3W—H3WA0.8497C11—H11A0.9600
O3W—H3WB0.8498C11—H11B0.9600
O4W—H4WA0.8498C11—H11C0.9600
O4W—H4WB0.8499C12—H120.9300
C1—C21.392 (4)
O1W—Zn1—O4W172.74 (10)C2—C1—H1A118.3
O1W—Zn1—O2W89.68 (9)C4—C2—C1116.5 (3)
O4W—Zn1—O2W86.56 (8)C4—C2—C3123.5 (3)
O1W—Zn1—O3W88.40 (9)C1—C2—C3120.0 (3)
O4W—Zn1—O3W85.42 (8)C2—C3—H3A109.5
O2W—Zn1—O3W90.41 (8)C2—C3—H3B109.5
O1W—Zn1—N292.68 (9)H3A—C3—H3B109.5
O4W—Zn1—N293.82 (9)C2—C3—H3C109.5
O2W—Zn1—N294.95 (8)H3A—C3—H3C109.5
O3W—Zn1—N2174.54 (8)H3B—C3—H3C109.5
O1W—Zn1—N191.22 (10)C5—C4—C2120.3 (3)
O4W—Zn1—N193.29 (9)C5—C4—H4A119.9
O2W—Zn1—N1172.85 (8)C2—C4—H4A119.9
O3W—Zn1—N196.70 (8)C4—C5—C6120.2 (3)
N2—Zn1—N177.93 (9)C4—C5—H5119.9
O7—S1—O8109.97 (11)C6—C5—H5119.9
O7—S1—O6109.92 (12)N1—C6—C5119.8 (3)
O8—S1—O6109.07 (11)N1—C6—C7116.8 (2)
O7—S1—O5109.56 (11)C5—C6—C7123.5 (3)
O8—S1—O5109.62 (11)N2—C7—C8120.3 (3)
O6—S1—O5108.68 (11)N2—C7—C6116.1 (2)
C1—N1—C6119.7 (2)C8—C7—C6123.6 (3)
C1—N1—Zn1125.80 (19)C9—C8—C7119.5 (3)
C6—N1—Zn1114.48 (17)C9—C8—H8120.2
C12—N2—C7119.0 (2)C7—C8—H8120.2
C12—N2—Zn1126.3 (2)C8—C9—C10120.9 (3)
C7—N2—Zn1114.67 (18)C8—C9—H9119.5
Zn1—O1W—H1WA126.3C10—C9—H9119.5
Zn1—O1W—H1WB125.8C9—C10—C12116.2 (3)
H1WA—O1W—H1WB107.8C9—C10—C11123.6 (3)
Zn1—O2W—H2WA127.8C12—C10—C11120.3 (3)
Zn1—O2W—H2WB119.8C10—C11—H11A109.5
H2WA—O2W—H2WB107.8C10—C11—H11B109.5
Zn1—O3W—H3WA119.6H11A—C11—H11B109.5
Zn1—O3W—H3WB120.4C10—C11—H11C109.5
H3WA—O3W—H3WB107.8H11A—C11—H11C109.5
Zn1—O4W—H4WA126.5H11B—C11—H11C109.5
Zn1—O4W—H4WB123.8N2—C12—C10124.0 (3)
H4WA—O4W—H4WB107.7N2—C12—H12118.0
N1—C1—C2123.5 (3)C10—C12—H12118.0
N1—C1—H1A118.3
O1W—Zn1—N1—C188.9 (2)C1—N1—C6—C50.2 (4)
O4W—Zn1—N1—C185.4 (2)Zn1—N1—C6—C5178.9 (2)
O3W—Zn1—N1—C10.3 (2)C1—N1—C6—C7178.8 (2)
N2—Zn1—N1—C1178.6 (2)Zn1—N1—C6—C72.1 (3)
O1W—Zn1—N1—C690.20 (19)C4—C5—C6—N10.1 (4)
O4W—Zn1—N1—C695.50 (19)C4—C5—C6—C7178.9 (3)
O3W—Zn1—N1—C6178.73 (18)C12—N2—C7—C81.4 (4)
N2—Zn1—N1—C62.29 (18)Zn1—N2—C7—C8177.9 (2)
O1W—Zn1—N2—C1290.7 (2)C12—N2—C7—C6179.0 (2)
O4W—Zn1—N2—C1286.1 (2)Zn1—N2—C7—C61.8 (3)
O2W—Zn1—N2—C120.8 (2)N1—C6—C7—N20.2 (4)
N1—Zn1—N2—C12178.6 (2)C5—C6—C7—N2179.1 (2)
O1W—Zn1—N2—C788.50 (19)N1—C6—C7—C8179.9 (3)
O4W—Zn1—N2—C794.72 (19)C5—C6—C7—C81.2 (4)
O2W—Zn1—N2—C7178.41 (18)N2—C7—C8—C91.3 (4)
N1—Zn1—N2—C72.17 (18)C6—C7—C8—C9179.1 (3)
C6—N1—C1—C20.4 (4)C7—C8—C9—C100.1 (4)
Zn1—N1—C1—C2179.4 (2)C8—C9—C10—C120.9 (4)
N1—C1—C2—C41.1 (4)C8—C9—C10—C11178.0 (3)
N1—C1—C2—C3178.0 (3)C7—N2—C12—C100.3 (4)
C1—C2—C4—C51.3 (4)Zn1—N2—C12—C10178.9 (2)
C3—C2—C4—C5177.8 (3)C9—C10—C12—N20.9 (4)
C2—C4—C5—C60.8 (4)C11—C10—C12—N2178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···S1i0.852.913.701 (2)155
O4W—H4WB···O6i0.851.842.695 (3)179
O4W—H4WA···S10.852.913.697 (2)155
O4W—H4WA···O50.851.872.722 (3)178
O3W—H3WB···O5ii0.851.902.748 (3)178
O3W—H3WA···O60.851.962.804 (3)170
O2W—H2WB···O8i0.851.992.831 (3)170
O2W—H2WA···O7iii0.851.922.766 (3)173
O1W—H1WB···S1iii0.853.003.801 (2)157
O1W—H1WB···O8iii0.851.872.717 (3)175
O1W—H1WA···O7ii0.851.932.772 (3)169
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H12N2)(H2O)4]SO4
Mr417.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5648 (17), 9.6050 (17), 18.477 (3)
β (°) 102.453 (4)
V3)1657.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.637, 0.683
No. of measured, independent and
observed [I > 2σ(I)] reflections
9462, 3263, 2648
Rint0.085
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.04
No. of reflections3263
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···S1i0.852.913.701 (2)155.1
O4W—H4WB···O6i0.851.842.695 (3)179.0
O4W—H4WA···S10.852.913.697 (2)154.8
O4W—H4WA···O50.851.872.722 (3)177.8
O3W—H3WB···O5ii0.851.902.748 (3)177.5
O3W—H3WA···O60.851.962.804 (3)169.8
O2W—H2WB···O8i0.851.992.831 (3)170.4
O2W—H2WA···O7iii0.851.922.766 (3)173.1
O1W—H1WB···S1iii0.853.003.801 (2)157.2
O1W—H1WB···O8iii0.851.872.717 (3)174.8
O1W—H1WA···O7ii0.851.932.772 (3)169.0
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 092300410031).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615–m616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchubert, U. S., Eschbaumer, C. & Hochwimmer, G. (1999). Synthesis, pp. 779–782.  CrossRef Google Scholar
First citationSchubert, U. S., Hochwimmer, G., Spindler, C. & Nuyken, O. (1999). Macromol. Rapid Commun. 20, 351–355.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J. (2009). Acta Cryst. E65, m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X. J., Janiak, C., Heinze, J., Drepper, F. & Mayer, P. (2001). Inorg. Chim. Acta, 318, 103–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds