organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

10-Benzyl-10H-pheno­thia­zine 9-oxide

aDepartment of Physics & Chemistry, Henan Polytechnic University, Jiao Zuo 454000, People's Republic of China, and bDepartment of Medicine, Hebi College of Vocation and Technology, He Bi 458030, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 22 June 2009; accepted 3 July 2009; online 8 July 2009)

In the title compound, C19H15NOS, the butterfly angle between the mean planes defined by the S, N and phenyl C atoms of the two wings of the phenothiazine unit is 23.4 (1)°. In the crystal, a supra­molecular two-dimensional arrangement arises from weak inter­molecular C—H⋯O inter­actions.

Related literature

For applications of phenothia­zines, see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. (1999). J. Am. Chem. Soc. 121, 4292-4293.]); Wermuth (2003[Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2th ed. London: Acdemic.]); Wang et al. (2008[Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381-382.]); Lam et al. (2001[Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379-47386.]). For the synthesis, see: Zhu et al. (2006[Zhu, X., Zhang, J. & Cheng, J. (2006). J. Org. Chem. 71, 7007-7015.]); Gilman et al. (1954[Gilman, H., Ingham, R. K., Champaigne, J. F., Diehl, J. W. & Ranck, R. O. (1954). J. Org. Chem. 19, 560-569.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NOS

  • Mr = 305.38

  • Monoclinic, P 21 /n

  • a = 6.2819 (4) Å

  • b = 11.9259 (8) Å

  • c = 20.3220 (14) Å

  • β = 94.6140 (10)°

  • V = 1517.54 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.961

  • 7251 measured reflections

  • 2511 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 2511 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O1i 0.97 2.52 3.431 (2) 157
C18—H18⋯O1ii 0.93 2.57 3.442 (3) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenothiazine molecule is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g., chlorpromazine and promethazine (Wermuth, 2003). Recently, some new applications of phenothazine derivatives have been found in medicines, such as antitubercular (Wang et al., 2008) and antitumor (Lam et al., 2001). As a part of our programme devoted to the new applications of phenothazine derivatives in medicne, we report herein the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, with its respective labels. The butterfly angle between the mean-planes defined by atoms S1/N1/C1-C6 and S1/N1/C7-C12 is 23.4 (1) °. The crystal packing (Fig. 2) consists of two-dimensional infinite plane along the a axis generated by intermolecular interactions of the weak C—H···O hydrogen bonds (details are in Table 1).

Related literature top

For applications of phenothiazines, see: Miller et al. (1999); Wermuth (2003); Wang et al. (2008); Lam et al. (2001). For the synthesis, see: Zhu et al. (2006); Gilman et al. (1954).

Experimental top

All reagents were of analytical grade. The title compound was prepared according to a literature method (Zhu et al., 2006; Gilman et al., 1954) from N-benzylphenothiazine. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement top

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.97 Å (methylene CH2) and 0.93Å (aryl group) and were refined in the riding-model approximation. Uiso(H) values were allowed at 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the a axis.
10-Benzyl-10H-phenothiazine 9-oxide top
Crystal data top
C19H15NOSF(000) = 640
Mr = 305.38Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1664 reflections
a = 6.2819 (4) Åθ = 2.6–22.2°
b = 11.9259 (8) ŵ = 0.21 mm1
c = 20.3220 (14) ÅT = 296 K
β = 94.614 (1)°Block, yellow
V = 1517.54 (18) Å30.30 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2511 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 24.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 76
Tmin = 0.939, Tmax = 0.961k = 1313
7251 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2518P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H15NOSV = 1517.54 (18) Å3
Mr = 305.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2819 (4) ŵ = 0.21 mm1
b = 11.9259 (8) ÅT = 296 K
c = 20.3220 (14) Å0.30 × 0.22 × 0.19 mm
β = 94.614 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1872 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.961Rint = 0.032
7251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2511 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2291 (2)0.28879 (12)0.65659 (8)0.0377 (4)
O10.2735 (3)0.01747 (11)0.65821 (7)0.0601 (4)
S10.11841 (9)0.04344 (4)0.61145 (3)0.04963 (19)
C10.0471 (3)0.24089 (15)0.67982 (9)0.0379 (5)
C20.0702 (3)0.29706 (17)0.72559 (10)0.0470 (5)
H20.02510.36720.74110.056*
C30.2502 (3)0.2501 (2)0.74777 (12)0.0559 (6)
H30.32160.28790.77940.067*
C40.3281 (4)0.1485 (2)0.72440 (12)0.0615 (7)
H40.45340.11900.73870.074*
C50.2173 (3)0.09217 (19)0.67984 (11)0.0553 (6)
H50.26850.02350.66360.066*
C60.0284 (3)0.13530 (16)0.65792 (10)0.0429 (5)
C70.3155 (3)0.25083 (15)0.59956 (9)0.0385 (5)
C80.4588 (3)0.31695 (18)0.56709 (11)0.0490 (5)
H80.49940.38650.58450.059*
C90.5405 (4)0.2812 (2)0.51022 (12)0.0613 (6)
H90.63830.32610.49040.074*
C100.4801 (4)0.1798 (2)0.48169 (12)0.0644 (7)
H100.53260.15710.44230.077*
C110.3413 (4)0.11342 (18)0.51272 (11)0.0551 (6)
H110.30030.04470.49420.066*
C120.2605 (3)0.14667 (16)0.57131 (10)0.0424 (5)
C130.3051 (3)0.39597 (15)0.68456 (10)0.0400 (5)
H13A0.45810.40070.68150.048*
H13B0.27980.39740.73100.048*
C140.2012 (3)0.49772 (15)0.65152 (9)0.0380 (5)
C150.0249 (4)0.49180 (19)0.60717 (11)0.0571 (6)
H150.03290.42230.59510.068*
C160.0678 (4)0.5888 (2)0.58025 (13)0.0713 (7)
H160.18750.58430.55030.086*
C170.0174 (4)0.6915 (2)0.59780 (13)0.0658 (7)
H170.04490.75660.57990.079*
C180.1927 (4)0.69818 (18)0.64129 (12)0.0577 (6)
H180.24980.76790.65310.069*
C190.2860 (3)0.60252 (16)0.66792 (10)0.0470 (5)
H190.40720.60800.69720.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0403 (9)0.0307 (9)0.0428 (9)0.0004 (8)0.0072 (7)0.0001 (7)
O10.0760 (11)0.0362 (8)0.0685 (10)0.0096 (8)0.0085 (9)0.0108 (7)
S10.0607 (4)0.0344 (3)0.0537 (4)0.0069 (3)0.0040 (3)0.0047 (2)
C10.0382 (11)0.0337 (10)0.0415 (11)0.0043 (9)0.0021 (9)0.0082 (9)
C20.0483 (13)0.0402 (12)0.0538 (13)0.0088 (10)0.0121 (10)0.0072 (10)
C30.0492 (14)0.0589 (15)0.0617 (15)0.0157 (12)0.0167 (11)0.0140 (12)
C40.0402 (13)0.0721 (17)0.0739 (17)0.0005 (13)0.0153 (12)0.0190 (14)
C50.0473 (13)0.0522 (13)0.0655 (15)0.0094 (11)0.0006 (12)0.0110 (12)
C60.0419 (12)0.0407 (12)0.0458 (12)0.0003 (10)0.0012 (9)0.0053 (9)
C70.0375 (11)0.0346 (11)0.0437 (12)0.0061 (9)0.0047 (9)0.0040 (9)
C80.0474 (13)0.0426 (12)0.0586 (14)0.0012 (10)0.0142 (11)0.0047 (11)
C90.0613 (15)0.0594 (15)0.0664 (16)0.0094 (13)0.0250 (12)0.0106 (13)
C100.0782 (18)0.0658 (17)0.0527 (15)0.0166 (15)0.0258 (13)0.0029 (13)
C110.0688 (16)0.0474 (13)0.0493 (13)0.0133 (12)0.0061 (12)0.0056 (11)
C120.0449 (12)0.0386 (11)0.0435 (12)0.0064 (10)0.0032 (9)0.0025 (9)
C130.0406 (11)0.0351 (11)0.0441 (11)0.0019 (9)0.0024 (9)0.0017 (9)
C140.0405 (12)0.0341 (11)0.0398 (11)0.0028 (9)0.0059 (9)0.0015 (9)
C150.0581 (15)0.0467 (13)0.0640 (15)0.0007 (11)0.0105 (12)0.0036 (11)
C160.0649 (17)0.0728 (18)0.0735 (17)0.0149 (15)0.0109 (13)0.0165 (15)
C170.0839 (19)0.0470 (15)0.0682 (16)0.0211 (14)0.0174 (15)0.0187 (12)
C180.0831 (18)0.0347 (12)0.0580 (14)0.0000 (12)0.0225 (13)0.0035 (11)
C190.0572 (14)0.0402 (12)0.0443 (12)0.0051 (11)0.0078 (10)0.0017 (10)
Geometric parameters (Å, º) top
N1—C11.394 (2)C9—C101.381 (3)
N1—C71.394 (2)C9—H90.9300
N1—C131.463 (2)C10—C111.368 (3)
O1—S11.4934 (15)C10—H100.9300
S1—C61.756 (2)C11—C121.389 (3)
S1—C121.759 (2)C11—H110.9300
C1—C21.402 (3)C13—C141.509 (2)
C1—C61.405 (3)C13—H13A0.9700
C2—C31.370 (3)C13—H13B0.9700
C2—H20.9300C14—C151.372 (3)
C3—C41.377 (3)C14—C191.389 (3)
C3—H30.9300C15—C161.388 (3)
C4—C51.363 (3)C15—H150.9300
C4—H40.9300C16—C171.372 (3)
C5—C61.399 (3)C16—H160.9300
C5—H50.9300C17—C181.358 (3)
C7—C121.400 (3)C17—H170.9300
C7—C81.401 (3)C18—C191.374 (3)
C8—C91.370 (3)C18—H180.9300
C8—H80.9300C19—H190.9300
C1—N1—C7122.21 (16)C11—C10—C9118.5 (2)
C1—N1—C13118.50 (15)C11—C10—H10120.8
C7—N1—C13118.04 (15)C9—C10—H10120.8
O1—S1—C6107.77 (9)C10—C11—C12121.3 (2)
O1—S1—C12107.82 (9)C10—C11—H11119.3
C6—S1—C1296.94 (9)C12—C11—H11119.3
N1—C1—C2121.18 (17)C11—C12—C7120.65 (19)
N1—C1—C6121.68 (18)C11—C12—S1115.57 (16)
C2—C1—C6117.14 (18)C7—C12—S1123.25 (15)
C3—C2—C1121.0 (2)N1—C13—C14114.44 (15)
C3—C2—H2119.5N1—C13—H13A108.6
C1—C2—H2119.5C14—C13—H13A108.6
C2—C3—C4121.7 (2)N1—C13—H13B108.6
C2—C3—H3119.1C14—C13—H13B108.6
C4—C3—H3119.1H13A—C13—H13B107.6
C5—C4—C3118.5 (2)C15—C14—C19118.54 (18)
C5—C4—H4120.8C15—C14—C13123.23 (17)
C3—C4—H4120.8C19—C14—C13118.22 (17)
C4—C5—C6121.5 (2)C14—C15—C16120.5 (2)
C4—C5—H5119.3C14—C15—H15119.8
C6—C5—H5119.3C16—C15—H15119.8
C5—C6—C1120.1 (2)C17—C16—C15119.9 (2)
C5—C6—S1115.95 (16)C17—C16—H16120.0
C1—C6—S1123.43 (15)C15—C16—H16120.0
N1—C7—C12121.97 (17)C18—C17—C16120.0 (2)
N1—C7—C8121.10 (18)C18—C17—H17120.0
C12—C7—C8116.93 (19)C16—C17—H17120.0
C9—C8—C7121.4 (2)C17—C18—C19120.4 (2)
C9—C8—H8119.3C17—C18—H18119.8
C7—C8—H8119.3C19—C18—H18119.8
C8—C9—C10121.2 (2)C18—C19—C14120.6 (2)
C8—C9—H9119.4C18—C19—H19119.7
C10—C9—H9119.4C14—C19—H19119.7
C7—N1—C1—C2162.60 (17)C7—C8—C9—C101.7 (3)
C13—N1—C1—C24.4 (3)C8—C9—C10—C112.1 (4)
C7—N1—C1—C616.6 (3)C9—C10—C11—C120.5 (3)
C13—N1—C1—C6176.46 (16)C10—C11—C12—C71.5 (3)
N1—C1—C2—C3179.35 (18)C10—C11—C12—S1170.45 (17)
C6—C1—C2—C30.1 (3)N1—C7—C12—C11176.90 (18)
C1—C2—C3—C42.6 (3)C8—C7—C12—C111.8 (3)
C2—C3—C4—C52.4 (3)N1—C7—C12—S111.8 (3)
C3—C4—C5—C60.1 (3)C8—C7—C12—S1169.48 (15)
C4—C5—C6—C12.5 (3)O1—S1—C12—C1190.65 (17)
C4—C5—C6—S1169.87 (17)C6—S1—C12—C11158.12 (16)
N1—C1—C6—C5176.90 (17)O1—S1—C12—C781.06 (18)
C2—C1—C6—C52.3 (3)C6—S1—C12—C730.17 (18)
N1—C1—C6—S111.3 (3)C1—N1—C13—C1486.1 (2)
C2—C1—C6—S1169.46 (15)C7—N1—C13—C1481.4 (2)
O1—S1—C6—C590.78 (17)N1—C13—C14—C1511.1 (3)
C12—S1—C6—C5157.95 (16)N1—C13—C14—C19170.27 (17)
O1—S1—C6—C181.32 (17)C19—C14—C15—C161.0 (3)
C12—S1—C6—C129.95 (18)C13—C14—C15—C16177.7 (2)
C1—N1—C7—C1216.3 (3)C14—C15—C16—C170.2 (4)
C13—N1—C7—C12176.65 (16)C15—C16—C17—C180.2 (4)
C1—N1—C7—C8162.34 (17)C16—C17—C18—C190.1 (4)
C13—N1—C7—C84.7 (3)C17—C18—C19—C140.9 (3)
N1—C7—C8—C9178.49 (19)C15—C14—C19—C181.3 (3)
C12—C7—C8—C90.2 (3)C13—C14—C19—C18177.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.972.523.431 (2)157
C18—H18···O1ii0.932.573.442 (3)157
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15NOS
Mr305.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.2819 (4), 11.9259 (8), 20.3220 (14)
β (°) 94.614 (1)
V3)1517.54 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.939, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7251, 2511, 1872
Rint0.032
(sin θ/λ)max1)0.582
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections2511
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.972.523.431 (2)157
C18—H18···O1ii0.932.573.442 (3)157
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Foundation of Henan Polytechnic University for Doctor Teachers, and the authors thank Ms Q. F. Wang for her support with the single-crystal X-ray diffraction data collection.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilman, H., Ingham, R. K., Champaigne, J. F., Diehl, J. W. & Ranck, R. O. (1954). J. Org. Chem. 19, 560–569.  CrossRef CAS Web of Science Google Scholar
First citationLam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379–47386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381–382.  Google Scholar
First citationWermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2th ed. London: Acdemic.  Google Scholar
First citationZhu, X., Zhang, J. & Cheng, J. (2006). J. Org. Chem. 71, 7007–7015.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds