metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(2-pyrid­yl)imino­meth­yl]phenolato}copper(II)

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China.
*Correspondence e-mail: chm_niey@ujn.edu.cn

(Received 1 July 2009; accepted 5 July 2009; online 11 July 2009)

In the title compound, [Cu(C12H9N2O)2], the CuII atom lies on a crystallographic inversion center and has a nearly square-planar geometry. The CuII center coordinates to the phenolic O and azomethine N atoms of the two symmetry-related 2-[(2-pyrid­yl)imino­meth­yl]phenolate ligands. The pyridyl N atoms do not coordinate to the CuII atom but participate in intra­molecular C—H⋯N hydrogen bonding. ππ stacking between the benzene rings and between the pyridyl rings [centroid–centroid distances 3.8142 (5) and 3.8142 (5) Å, respectively] links the mol­ecules into a chain propagating parallel to [100].

Related literature

For the preparation of the title compound by an electrochemical method, see: Castineiras et al. (1989[Castineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543-2549.]), and by a solution method, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.]). For the crystal structures of related compounds, see: Castineiras et al. (1989[Castineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543-2549.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H9N2O)2]

  • Mr = 457.96

  • Triclinic, [P \overline 1]

  • a = 3.8142 (5) Å

  • b = 11.217 (1) Å

  • c = 11.9001 (12) Å

  • α = 106.884 (2)°

  • β = 90.374 (1)°

  • γ = 90.289 (1)°

  • V = 487.16 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 298 K

  • 0.41 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.846

  • 2547 measured reflections

  • 1695 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.077

  • S = 1.07

  • 1695 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1 0.93 2.29 2.684 (3) 105

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base, N-salicylidene 2-aminopyridine, has been widely studied as a potential tridentate ligand. The title compound has been prepared using an electrochemical method by Castineiras et al. (1989) starting from N-salicylidene 2-aminopyridine and copper. Parashar et al. (1988) reported that refluxing a mixture of Cu(OAc)2 (OAc = acetato) and N-salicylidene 2-aminopyridine in a 1:2 molar ratio resulted in a green complex having the same formula but with an octahedral geometry deduced from spectroscopic properties. We have found that a simple method of solution diffusion produces the brown title compound.

As shown in Fig. 1, the copper atom lies on a crystallographic inversion center and has a square planar geometry. The copper center coordinates to the phenolic oxygen and the azomethine nitrogen atoms of the two symmetry related groups. The pyridyl nitrogen atoms do not coordinate to the copper. The Cu—O bond lengths are 1.9212 (17) Å, and the Cu—N bond lengths are 2.0216 (19) Å, respectively, all similar to those reported in the related structures (Castineiras et al., 1989).

The interplane dihedral angles are found to be as follows: 31.60 (7)° between the N2O2 plane and the benzene ring, 54.28 (7)° between the N2O2 plane and the pyridyl ring, and 22.75 (9)° between the benzene and the pyridyl ring. The intramolecular hydrogen bond C1—H1···N1 (2.684 (3) Å, 105°, Table 1) further stabilizes the whole structure. The π-π stacking between the benzene rings (centroid to centroid, 3.8142 (5) Å) and the pyridyl rings (centroid to centroid, 3.8142 (5) Å) links the molecules into a one-dimensional chain (Fig. 2).

Related literature top

For the preparation of the title compound by an electrochemical method, see: Castineiras et al. (1989), and by a solution method, see: Parashar et al. (1988). For the crystal structures of related compounds, see: Castineiras et al. (1989).

Experimental top

To a green solution of salicylaldehyde (23 mg, 0.19 mmol) and Cu(OAc)2.H2O (11 mg, 0.05 mmol) in ethanol (7 ml) was added slowly a solution of 2-aminopyridine (21 mg, 0.22 mmol) in ethanol (1 ml). The resulting mixture was allowed to stand still and brown crystalline needles were grown after 1 day. IR (KBr): v = 3435, 1611, 1444, 1326, 1187 cm -1.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability thermal ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain constructed by the π-π stacking.
Bis{2-[(2-pyridyl)iminomethyl]phenolato}copper(II) top
Crystal data top
[Cu(C12H9N2O)2]Z = 1
Mr = 457.96F(000) = 235
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8142 (5) ÅCell parameters from 1475 reflections
b = 11.217 (1) Åθ = 2.2–27.5°
c = 11.9001 (12) ŵ = 1.15 mm1
α = 106.884 (2)°T = 298 K
β = 90.374 (1)°Needle, brown
γ = 90.289 (1)°0.41 × 0.17 × 0.15 mm
V = 487.16 (9) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 44
Tmin = 0.650, Tmax = 0.846k = 1313
2547 measured reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.355P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C12H9N2O)2]γ = 90.289 (1)°
Mr = 457.96V = 487.16 (9) Å3
Triclinic, P1Z = 1
a = 3.8142 (5) ÅMo Kα radiation
b = 11.217 (1) ŵ = 1.15 mm1
c = 11.9001 (12) ÅT = 298 K
α = 106.884 (2)°0.41 × 0.17 × 0.15 mm
β = 90.374 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1481 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.846Rint = 0.015
2547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
1695 reflectionsΔρmin = 0.29 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.03882 (17)
N10.2225 (6)0.15806 (19)0.55001 (19)0.0400 (5)
N20.4891 (5)0.31537 (17)0.48298 (17)0.0305 (5)
O10.8250 (5)0.46999 (15)0.37229 (15)0.0413 (5)
C10.5395 (7)0.2344 (2)0.3821 (2)0.0331 (6)
H10.49270.15170.37740.040*
C20.6590 (7)0.2583 (2)0.2773 (2)0.0325 (6)
C30.7979 (7)0.3757 (2)0.2770 (2)0.0326 (6)
C40.9196 (7)0.3865 (3)0.1691 (2)0.0389 (6)
H41.01210.46230.16580.047*
C50.9057 (7)0.2886 (3)0.0689 (2)0.0459 (7)
H50.98700.29940.00100.055*
C60.7726 (8)0.1734 (3)0.0696 (2)0.0494 (7)
H60.76570.10720.00110.059*
C70.6524 (8)0.1595 (2)0.1727 (2)0.0427 (7)
H70.56350.08250.17380.051*
C80.4001 (6)0.2651 (2)0.5769 (2)0.0316 (6)
C90.5106 (7)0.3277 (3)0.6892 (2)0.0412 (6)
H90.63170.40300.70450.049*
C100.4374 (8)0.2761 (3)0.7780 (3)0.0494 (7)
H100.50850.31600.85470.059*
C110.2574 (8)0.1647 (3)0.7520 (3)0.0509 (8)
H110.20450.12780.81050.061*
C120.1583 (8)0.1094 (3)0.6381 (3)0.0491 (8)
H120.03940.03350.62080.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0584 (3)0.0241 (2)0.0318 (3)0.0022 (2)0.0154 (2)0.00443 (18)
N10.0457 (14)0.0298 (11)0.0452 (13)0.0023 (10)0.0071 (11)0.0116 (10)
N20.0343 (12)0.0261 (10)0.0306 (11)0.0019 (9)0.0037 (9)0.0073 (9)
O10.0597 (13)0.0304 (9)0.0301 (10)0.0079 (9)0.0143 (9)0.0029 (8)
C10.0363 (15)0.0233 (12)0.0375 (14)0.0001 (10)0.0005 (11)0.0054 (11)
C20.0341 (14)0.0286 (13)0.0312 (13)0.0052 (11)0.0027 (11)0.0030 (10)
C30.0335 (14)0.0330 (13)0.0290 (13)0.0046 (11)0.0036 (11)0.0051 (11)
C40.0384 (16)0.0444 (15)0.0339 (14)0.0010 (12)0.0047 (12)0.0112 (12)
C50.0437 (17)0.065 (2)0.0258 (14)0.0025 (14)0.0037 (12)0.0081 (13)
C60.0526 (19)0.0517 (18)0.0318 (15)0.0027 (14)0.0007 (13)0.0071 (13)
C70.0480 (17)0.0340 (14)0.0391 (15)0.0012 (12)0.0020 (13)0.0006 (12)
C80.0324 (14)0.0280 (12)0.0363 (14)0.0036 (10)0.0045 (11)0.0120 (11)
C90.0401 (16)0.0438 (16)0.0404 (16)0.0012 (12)0.0032 (12)0.0136 (13)
C100.0501 (18)0.064 (2)0.0370 (16)0.0118 (15)0.0021 (13)0.0186 (14)
C110.0545 (19)0.0555 (19)0.0544 (19)0.0185 (15)0.0182 (15)0.0336 (16)
C120.0541 (19)0.0367 (15)0.063 (2)0.0027 (13)0.0179 (15)0.0240 (14)
Geometric parameters (Å, º) top
Cu1—O11.9212 (17)C4—H40.9300
Cu1—O1i1.9212 (17)C5—C61.388 (4)
Cu1—N2i2.0216 (19)C5—H50.9300
Cu1—N22.0216 (19)C6—C71.363 (4)
N1—C81.330 (3)C6—H60.9300
N1—C121.339 (3)C7—H70.9300
N2—C11.294 (3)C8—C91.379 (4)
N2—C81.433 (3)C9—C101.373 (4)
O1—C31.310 (3)C9—H90.9300
C1—C21.426 (3)C10—C111.376 (4)
C1—H10.9300C10—H100.9300
C2—C71.406 (3)C11—C121.366 (4)
C2—C31.419 (3)C11—H110.9300
C3—C41.406 (3)C12—H120.9300
C4—C51.366 (4)
O1—Cu1—O1i180.000 (1)C4—C5—H5119.4
O1—Cu1—N2i90.50 (8)C6—C5—H5119.4
O1i—Cu1—N2i89.50 (7)C7—C6—C5118.6 (3)
O1—Cu1—N289.50 (7)C7—C6—H6120.7
O1i—Cu1—N290.50 (8)C5—C6—H6120.7
N2i—Cu1—N2180.000 (1)C6—C7—C2121.8 (3)
C8—N1—C12116.8 (2)C6—C7—H7119.1
C1—N2—C8115.7 (2)C2—C7—H7119.1
C1—N2—Cu1120.87 (16)N1—C8—C9123.6 (2)
C8—N2—Cu1123.30 (15)N1—C8—N2117.7 (2)
C3—O1—Cu1123.48 (16)C9—C8—N2118.7 (2)
N2—C1—C2127.1 (2)C10—C9—C8118.3 (3)
N2—C1—H1116.4C10—C9—H9120.9
C2—C1—H1116.4C8—C9—H9120.9
C7—C2—C3119.6 (2)C9—C10—C11119.2 (3)
C7—C2—C1118.2 (2)C9—C10—H10120.4
C3—C2—C1122.1 (2)C11—C10—H10120.4
O1—C3—C4120.4 (2)C12—C11—C10118.4 (3)
O1—C3—C2122.7 (2)C12—C11—H11120.8
C4—C3—C2116.9 (2)C10—C11—H11120.8
C5—C4—C3121.8 (3)N1—C12—C11123.8 (3)
C5—C4—H4119.1N1—C12—H12118.1
C3—C4—H4119.1C11—C12—H12118.1
C4—C5—C6121.3 (3)
O1—Cu1—N2—C129.5 (2)C3—C4—C5—C60.5 (4)
O1i—Cu1—N2—C1150.5 (2)C4—C5—C6—C70.5 (4)
O1—Cu1—N2—C8155.47 (19)C5—C6—C7—C20.2 (4)
O1i—Cu1—N2—C824.53 (19)C3—C2—C7—C60.8 (4)
N2i—Cu1—O1—C3138.9 (2)C1—C2—C7—C6177.8 (3)
N2—Cu1—O1—C341.1 (2)C12—N1—C8—C91.5 (4)
C8—N2—C1—C2174.2 (2)C12—N1—C8—N2176.5 (2)
Cu1—N2—C1—C210.4 (4)C1—N2—C8—N130.6 (3)
N2—C1—C2—C7171.7 (3)Cu1—N2—C8—N1144.60 (19)
N2—C1—C2—C311.3 (4)C1—N2—C8—C9147.5 (2)
Cu1—O1—C3—C4149.6 (2)Cu1—N2—C8—C937.2 (3)
Cu1—O1—C3—C232.7 (3)N1—C8—C9—C100.8 (4)
C7—C2—C3—O1177.1 (2)N2—C8—C9—C10177.2 (2)
C1—C2—C3—O10.2 (4)C8—C9—C10—C110.1 (4)
C7—C2—C3—C40.7 (4)C9—C10—C11—C120.0 (4)
C1—C2—C3—C4177.6 (2)C8—N1—C12—C111.5 (4)
O1—C3—C4—C5177.8 (2)C10—C11—C12—N10.8 (5)
C2—C3—C4—C50.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.292.684 (3)105

Experimental details

Crystal data
Chemical formula[Cu(C12H9N2O)2]
Mr457.96
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.8142 (5), 11.217 (1), 11.9001 (12)
α, β, γ (°)106.884 (2), 90.374 (1), 90.289 (1)
V3)487.16 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.41 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.650, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
2547, 1695, 1481
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.07
No. of reflections1695
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10.9302.292.684 (3)105
 

Acknowledgements

The authors thank the University of Jinan (B0605) for support of this work.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543–2549.  CSD CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds