organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis[2-(2-meth­oxy­eth­oxy)phen­yl]-1,3,4-oxa­diazole

aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: Han_jianrong@126.com

(Received 15 July 2009; accepted 22 July 2009; online 29 July 2009)

In the title compound, C20H22N2O5, the central 1,3,4-oxadiazole ring is essentially planar [r.m.s. deviation from the best plane of 0.0011 Å] and makes dihedral angles of 4.10 (3) and 13.32 (4)° with the two benzene rings. In the crystal structure, the packing is stabilized by weak non-classical inter­molecular C—H⋯N hydrogen bonds, which link the mol­ecules into an extended network.

Related literature

For the optical and electronic properties of 1,3,4-oxadizole and its dericatives, see: Emi & Toru (2006[Emi, H. & Toru, K. (2006). Dyes Pigments, 70, 43-47.]). Liu et al. (1997[Liu, Y. Q., Jiang, X. Z., Li, Q. L. & Zhu, D. B. (1997). Synth. Met. 71, 1285-1286.]); Peng et al. (2006[Peng, Z., Bao, H. X., Qi, X. Z., Bing, Y., Min, L. & Guo, Z. (2006). Synth. Met. 156, 705-713.]); Satoshi et al. (2000[Satoshi, H., Keisuke, E. & Kazuaki, F. (2000). J. Appl. Phys. 87, 1968-1973.]). For reference geometrical data: see: Tian et al. (2009[Tian, X., Han, J.-R., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2009). Acta Cryst. E65, o1792.]). For related structures, see: Orgzall et al. (2005[Orgzall, I., Franco, O., Reck, G. & Schulz, B. (2005). J. Mol. Struct. 749, 144-154.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O5

  • Mr = 370.40

  • Monoclinic, P 21 /c

  • a = 7.7264 (15) Å

  • b = 13.886 (3) Å

  • c = 16.911 (3) Å

  • β = 96.42 (3)°

  • V = 1803.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.990

  • 13017 measured reflections

  • 4290 independent reflections

  • 3635 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.04

  • 4290 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.62 3.385 (2) 140
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The optical and electronic properties of 1,3,4-oxadizole have received great attention in the field of electroluminescence (Emi et al., 2006). A well known derivative of 1,3,4-oxadiazole, 2-(4-biphenyl)-5-(tert-butylphenyl)-1,3,4-oxadiazole (PBD), has been used as electron-injection material to improve the balance of charge carrier and to increase the photon/electron quantum efficiency (Liu et al., 1997) and the electron-transporting material in organic electroluminescence device (Satoshi et al., 2000). It has been demonstrated that modifying the side chains or inserting other heterocycles in 1,3,4-oxadizole system could result in good electroluminescent molecules as organic electroluminescence materials (Peng et al., 2006). As part of an investigation on potential electroluminescent molecules by modifying the side chains of 2,5-diaryl-1,3,4-oxadizole, we reporte here the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O3/C10/N1/N2/C11) is essentially planar, with an r.m.s. deviation for fitted atoms of 0.0011 Å. It makes dihedral angles of, 13.32 (4) and 4.10 (3)°, respectively, with the benzene rings (C4—C9) and (C12—C17). The crystal packing is stabilized by weak non-classical intermolecular C—H···N hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Tian et al. 2009). The crystal structure of a 2,5-diaryl-1,3,4-oxadiazole derivative have been reported (Orgzall et al., 2005).

Related literature top

For the optical and electronic properties of 1,3,4-oxadizole and its dericatives, see: Emi & Toru (2006). Liu et al. (1997); Peng et al. (2006); Satoshi et al. (2000). For reference geometrical data: see: Tian et al. (2009). For related structures, see: Orgzall et al. (2005).

Experimental top

2,5-Di(o-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), NaH (0.5 g, 20 mmol) and 1-chloro-2-methoxyethane (0.75 g, 8 mmol) were added and dissolved in 50 ml of THF, the mixture was stirred refluxing for 10 h. giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 81% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate solution at room temperature.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines; H-atom not involved in interactions have been excludeed
2,5-Bis[2-(2-methoxyethoxy)phenyl]-1,3,4-oxadiazole top
Crystal data top
C20H22N2O5F(000) = 784
Mr = 370.40Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4968 reflections
a = 7.7264 (15) Åθ = 2.4–27.9°
b = 13.886 (3) ŵ = 0.10 mm1
c = 16.911 (3) ÅT = 293 K
β = 96.42 (3)°Prism, colourless
V = 1803.0 (6) Å30.16 × 0.14 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
4290 independent reflections
Radiation source: rotating anode3635 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.030
ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 910
Tmin = 0.984, Tmax = 0.990k = 1318
13017 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0999P]
where P = (Fo2 + 2Fc2)/3
4290 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H22N2O5V = 1803.0 (6) Å3
Mr = 370.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7264 (15) ŵ = 0.10 mm1
b = 13.886 (3) ÅT = 293 K
c = 16.911 (3) Å0.16 × 0.14 × 0.10 mm
β = 96.42 (3)°
Data collection top
Rigaku Saturn
diffractometer
4290 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3635 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.990Rint = 0.030
13017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4290 reflectionsΔρmin = 0.23 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88655 (10)0.03469 (6)0.35096 (5)0.0284 (2)
O20.63462 (10)0.15549 (5)0.25616 (5)0.02362 (19)
O30.35245 (9)0.06943 (5)0.04514 (4)0.01871 (17)
O40.23221 (10)0.04689 (5)0.10258 (4)0.02263 (18)
O50.18138 (11)0.24756 (6)0.15011 (6)0.0307 (2)
N10.40253 (12)0.02963 (6)0.17243 (6)0.0230 (2)
N20.30539 (12)0.04406 (6)0.13138 (6)0.0228 (2)
C10.89595 (18)0.05579 (9)0.38968 (8)0.0337 (3)
H1A0.92110.04640.44600.051*
H1B0.98650.09370.37060.051*
H1C0.78660.08860.37870.051*
C20.76278 (15)0.09686 (9)0.38010 (7)0.0265 (3)
H2A0.80270.11610.43420.032*
H2B0.65240.06360.38040.032*
C30.73965 (15)0.18388 (8)0.32781 (7)0.0245 (2)
H3A0.68250.23480.35430.029*
H3B0.85190.20730.31560.029*
C40.60454 (14)0.22178 (7)0.19721 (7)0.0207 (2)
C50.66365 (15)0.31641 (8)0.20354 (7)0.0251 (2)
H50.72570.33780.25060.030*
C60.62996 (15)0.37886 (8)0.13967 (8)0.0281 (3)
H60.66810.44230.14450.034*
C70.53997 (16)0.34777 (8)0.06861 (8)0.0280 (3)
H70.52170.38940.02540.034*
C80.47746 (15)0.25413 (8)0.06264 (7)0.0235 (2)
H80.41580.23350.01530.028*
C90.50575 (14)0.19043 (7)0.12671 (6)0.0197 (2)
C100.42605 (13)0.09472 (7)0.11946 (6)0.0182 (2)
C110.27775 (13)0.01706 (7)0.05765 (6)0.0176 (2)
C120.17690 (13)0.06928 (7)0.00691 (6)0.0177 (2)
C130.09329 (14)0.15339 (7)0.01298 (7)0.0219 (2)
H130.10250.17310.06580.026*
C140.00307 (15)0.20810 (8)0.04446 (7)0.0250 (2)
H140.05770.26420.03040.030*
C150.01745 (15)0.17859 (8)0.12307 (7)0.0245 (2)
H150.07960.21610.16200.029*
C160.05963 (14)0.09390 (8)0.14445 (7)0.0219 (2)
H160.04710.07410.19730.026*
C170.15615 (13)0.03817 (7)0.08668 (6)0.0185 (2)
C180.20669 (15)0.08174 (8)0.18286 (6)0.0238 (2)
H18A0.08330.08590.20100.029*
H18B0.26070.03850.21790.029*
C190.28879 (15)0.17939 (8)0.18332 (7)0.0248 (2)
H19A0.40260.17800.15260.030*
H19B0.30400.19770.23750.030*
C200.25736 (17)0.34043 (8)0.14647 (9)0.0329 (3)
H20A0.36440.33910.11170.049*
H20B0.17870.38550.12650.049*
H20C0.28050.35970.19880.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (4)0.0240 (4)0.0367 (5)0.0018 (3)0.0058 (4)0.0001 (3)
O20.0248 (4)0.0227 (4)0.0218 (4)0.0033 (3)0.0042 (3)0.0033 (3)
O30.0215 (4)0.0161 (4)0.0181 (4)0.0008 (3)0.0002 (3)0.0014 (3)
O40.0308 (4)0.0193 (4)0.0175 (4)0.0038 (3)0.0014 (3)0.0012 (3)
O50.0235 (4)0.0208 (4)0.0497 (6)0.0002 (3)0.0120 (4)0.0026 (4)
N10.0257 (5)0.0205 (5)0.0215 (5)0.0025 (4)0.0034 (4)0.0006 (3)
N20.0259 (5)0.0198 (5)0.0216 (5)0.0030 (4)0.0028 (4)0.0002 (3)
C10.0361 (7)0.0287 (6)0.0355 (7)0.0017 (5)0.0001 (6)0.0022 (5)
C20.0234 (6)0.0327 (6)0.0227 (6)0.0019 (5)0.0003 (4)0.0062 (4)
C30.0203 (5)0.0274 (6)0.0243 (6)0.0003 (4)0.0035 (4)0.0091 (4)
C40.0174 (5)0.0205 (5)0.0248 (6)0.0020 (4)0.0043 (4)0.0037 (4)
C50.0204 (5)0.0236 (6)0.0314 (6)0.0018 (4)0.0031 (5)0.0082 (4)
C60.0266 (6)0.0173 (5)0.0413 (7)0.0023 (4)0.0079 (5)0.0040 (5)
C70.0300 (6)0.0213 (6)0.0335 (7)0.0003 (4)0.0070 (5)0.0028 (4)
C80.0247 (6)0.0208 (5)0.0252 (6)0.0008 (4)0.0033 (4)0.0009 (4)
C90.0172 (5)0.0186 (5)0.0234 (6)0.0012 (4)0.0030 (4)0.0029 (4)
C100.0166 (5)0.0197 (5)0.0178 (5)0.0022 (4)0.0001 (4)0.0025 (4)
C110.0169 (5)0.0141 (5)0.0218 (5)0.0019 (4)0.0025 (4)0.0000 (4)
C120.0168 (5)0.0156 (5)0.0205 (5)0.0032 (4)0.0013 (4)0.0026 (4)
C130.0221 (5)0.0191 (5)0.0242 (6)0.0020 (4)0.0013 (4)0.0016 (4)
C140.0238 (6)0.0181 (5)0.0328 (6)0.0025 (4)0.0015 (5)0.0006 (4)
C150.0212 (5)0.0218 (6)0.0295 (6)0.0004 (4)0.0022 (5)0.0075 (4)
C160.0221 (5)0.0235 (5)0.0199 (5)0.0036 (4)0.0010 (4)0.0039 (4)
C170.0180 (5)0.0167 (5)0.0212 (5)0.0024 (4)0.0038 (4)0.0015 (4)
C180.0278 (6)0.0263 (6)0.0170 (5)0.0018 (4)0.0008 (4)0.0022 (4)
C190.0227 (6)0.0262 (6)0.0260 (6)0.0028 (4)0.0051 (5)0.0057 (4)
C200.0271 (6)0.0227 (6)0.0492 (8)0.0015 (5)0.0058 (6)0.0042 (5)
Geometric parameters (Å, º) top
O1—C11.4149 (15)C6—H60.9300
O1—C21.4171 (14)C7—C81.3868 (16)
O2—C41.3577 (13)C7—H70.9300
O2—C31.4360 (13)C8—C91.3969 (15)
O3—C111.3593 (12)C8—H80.9300
O3—C101.3663 (13)C9—C101.4641 (15)
O4—C171.3594 (13)C11—C121.4611 (14)
O4—C181.4341 (13)C12—C131.3940 (15)
O5—C201.4154 (14)C12—C171.4085 (15)
O5—C191.4158 (14)C13—C141.3833 (15)
N1—C101.2996 (14)C13—H130.9300
N1—N21.4057 (13)C14—C151.3837 (17)
N2—C111.2967 (14)C14—H140.9300
C1—H1A0.9600C15—C161.3845 (16)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.3952 (15)
C2—C31.4963 (17)C16—H160.9300
C2—H2A0.9700C18—C191.4973 (16)
C2—H2B0.9700C18—H18A0.9700
C3—H3A0.9700C18—H18B0.9700
C3—H3B0.9700C19—H19A0.9700
C4—C51.3913 (15)C19—H19B0.9700
C4—C91.4108 (15)C20—H20A0.9600
C5—C61.3870 (17)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C71.3882 (18)
C1—O1—C2112.44 (10)N1—C10—O3112.30 (9)
C4—O2—C3117.88 (9)N1—C10—C9131.57 (10)
C11—O3—C10102.96 (8)O3—C10—C9116.00 (9)
C17—O4—C18117.63 (8)N2—C11—O3112.21 (9)
C20—O5—C19111.58 (9)N2—C11—C12126.29 (9)
C10—N1—N2105.90 (9)O3—C11—C12121.50 (9)
C11—N2—N1106.62 (9)C13—C12—C17118.81 (10)
O1—C1—H1A109.5C13—C12—C11117.27 (10)
O1—C1—H1B109.5C17—C12—C11123.89 (9)
H1A—C1—H1B109.5C14—C13—C12121.22 (11)
O1—C1—H1C109.5C14—C13—H13119.4
H1A—C1—H1C109.5C12—C13—H13119.4
H1B—C1—H1C109.5C13—C14—C15119.41 (10)
O1—C2—C3109.09 (10)C13—C14—H14120.3
O1—C2—H2A109.9C15—C14—H14120.3
C3—C2—H2A109.9C14—C15—C16120.79 (10)
O1—C2—H2B109.9C14—C15—H15119.6
C3—C2—H2B109.9C16—C15—H15119.6
H2A—C2—H2B108.3C15—C16—C17120.01 (10)
O2—C3—C2107.21 (9)C15—C16—H16120.0
O2—C3—H3A110.3C17—C16—H16120.0
C2—C3—H3A110.3O4—C17—C16123.53 (10)
O2—C3—H3B110.3O4—C17—C12116.78 (9)
C2—C3—H3B110.3C16—C17—C12119.69 (10)
H3A—C3—H3B108.5O4—C18—C19107.28 (9)
O2—C4—C5123.78 (10)O4—C18—H18A110.3
O2—C4—C9116.32 (9)C19—C18—H18A110.3
C5—C4—C9119.90 (10)O4—C18—H18B110.3
C6—C5—C4119.94 (11)C19—C18—H18B110.3
C6—C5—H5120.0H18A—C18—H18B108.5
C4—C5—H5120.0O5—C19—C18109.63 (9)
C5—C6—C7120.79 (11)O5—C19—H19A109.7
C5—C6—H6119.6C18—C19—H19A109.7
C7—C6—H6119.6O5—C19—H19B109.7
C8—C7—C6119.43 (11)C18—C19—H19B109.7
C8—C7—H7120.3H19A—C19—H19B108.2
C6—C7—H7120.3O5—C20—H20A109.5
C7—C8—C9120.94 (11)O5—C20—H20B109.5
C7—C8—H8119.5H20A—C20—H20B109.5
C9—C8—H8119.5O5—C20—H20C109.5
C8—C9—C4118.89 (10)H20A—C20—H20C109.5
C8—C9—C10118.81 (10)H20B—C20—H20C109.5
C4—C9—C10122.26 (10)
C10—N1—N2—C110.40 (12)N1—N2—C11—O31.21 (12)
C1—O1—C2—C3170.86 (10)N1—N2—C11—C12177.78 (9)
C4—O2—C3—C2176.18 (9)C10—O3—C11—N21.48 (11)
O1—C2—C3—O276.04 (11)C10—O3—C11—C12177.56 (9)
C3—O2—C4—C52.69 (15)N2—C11—C12—C134.11 (16)
C3—O2—C4—C9177.96 (9)O3—C11—C12—C13174.79 (9)
O2—C4—C5—C6178.67 (10)N2—C11—C12—C17177.65 (10)
C9—C4—C5—C62.00 (17)O3—C11—C12—C173.44 (16)
C4—C5—C6—C71.03 (18)C17—C12—C13—C142.55 (16)
C5—C6—C7—C82.46 (18)C11—C12—C13—C14179.12 (10)
C6—C7—C8—C90.83 (18)C12—C13—C14—C150.30 (17)
C7—C8—C9—C42.15 (17)C13—C14—C15—C161.66 (17)
C7—C8—C9—C10175.47 (10)C14—C15—C16—C171.30 (17)
O2—C4—C9—C8177.06 (9)C18—O4—C17—C161.85 (15)
C5—C4—C9—C83.56 (16)C18—O4—C17—C12177.53 (9)
O2—C4—C9—C105.40 (15)C15—C16—C17—O4178.37 (10)
C5—C4—C9—C10173.98 (10)C15—C16—C17—C120.99 (16)
N2—N1—C10—O30.54 (12)C13—C12—C17—O4176.54 (9)
N2—N1—C10—C9174.94 (10)C11—C12—C17—O41.68 (15)
C11—O3—C10—N11.22 (11)C13—C12—C17—C162.87 (15)
C11—O3—C10—C9175.03 (9)C11—C12—C17—C16178.92 (9)
C8—C9—C10—N1165.11 (11)C17—O4—C18—C19175.03 (9)
C4—C9—C10—N112.43 (18)C20—O5—C19—C18177.69 (10)
C8—C9—C10—O310.25 (14)O4—C18—C19—O575.52 (11)
C4—C9—C10—O3172.21 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.385 (2)140
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22N2O5
Mr370.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7264 (15), 13.886 (3), 16.911 (3)
β (°) 96.42 (3)
V3)1803.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.984, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13017, 4290, 3635
Rint0.030
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04
No. of reflections4290
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.385 (2)140.4
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional contact author, e-mail: chlsx@263.net.

Acknowledgements

This work was supported by the Foundation of Hebei University of Science & Technology (No. XL200746).

References

First citationEmi, H. & Toru, K. (2006). Dyes Pigments, 70, 43–47.  Google Scholar
First citationLiu, Y. Q., Jiang, X. Z., Li, Q. L. & Zhu, D. B. (1997). Synth. Met. 71, 1285–1286.  CrossRef Web of Science Google Scholar
First citationOrgzall, I., Franco, O., Reck, G. & Schulz, B. (2005). J. Mol. Struct. 749, 144–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, Z., Bao, H. X., Qi, X. Z., Bing, Y., Min, L. & Guo, Z. (2006). Synth. Met. 156, 705–713.  Web of Science CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSatoshi, H., Keisuke, E. & Kazuaki, F. (2000). J. Appl. Phys. 87, 1968–1973.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, X., Han, J.-R., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2009). Acta Cryst. E65, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds