organic compounds
N3,N6,2,5,7-Pentaphenyl-2,5,7-triazabicyclo[2.2.1]heptane-3,6-diamine
aDepartment of Chemistry, Imam Hossein University, Tehran, Iran
*Correspondence e-mail: amir.tahery1@gmail.com
In the title compound, C34H31N5, the observed molecular geometry suggests that anomeric effects are present in terms of short C—N bond lengths and reduced pyramidality of the N atoms.
Related literature
For the synthesis of the title compound and the structure of another 2,5,7–triazabicyclo[2.2.1]heptan derivative, see: Taheri & Moosavi (2009). For its precursors, see: Kliegman & Barnes (1970); Taheri & Moosavi (2008). For general background to azanorbornanes, see Alphen, (1933); Alvaro et al. (2007); Archelas & Morin (1984); Nitravati & Sikhibhushan (1939, 1941); Potts & Husain (1972); Potts et al. (1974); Neunhoeffer & Fruhauf (1969, 1970); Stanforth et al. (2002). For the syntheses of polyazapolycyclic compounds, see: Nielsen et al. (1990, 1992, 1998). For the see: Senderowitz et al. (1992); Reed & Schleyer (1988); Watson et al. (1990); Davies et al. (1992).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809024416/rk2152sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024416/rk2152Isup2.hkl
Aqueous glyoxal (40% v/v, 1.15 ml, 0.01 mol) was added dropwise to a stirred solution of 1,1',2,2'–tetrakis(phenylamino)ethane (3.94 g, 0.01 mol) in ethanol (50 ml). The solution temperature was kept at 273 K during the reaction. The mixture was put aside for 24 h at a temperature of 278–283 K. The resulting white precipitate was filtered off and washed with cold ethanol to give 2.53 g (55% yield) of I (m.p. 428 K).
1H NMR (CDCl3): 1H 6.59–7.30 (m, 25H, CHAr), 5.69 (s, 2H, CH), 4.93 (d, 2H, J = 10 Hz, CH), 3.69 (d, 2H, J = 10 Hz, NH). Addition of D2O to the NMR sample caused the NH signals to disappeared and the CH doublet quickly converted to a singlet.
13C NMR (CDCl3): 13C 144.8, 144.2, 143.6,129.3, 129.7, 122.1, 119.4, 118.7, 117.4, 113.7, 113.2 (CHAr), 76.0 (CH), 72.4 (CH).
The H atoms of the NH–groups were located in the difference Fourier map and refined in rigid model with fixed Uiso(H) = 1.2Ueq(N) parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed Uiso(H) = 1.2Ueq(C) parameters. Friedel opposites were merged
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of I, with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. |
C34H31N5 | F(000) = 1080 |
Mr = 509.64 | Dx = 1.241 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4705 reflections |
a = 9.7427 (4) Å | θ = 2.4–22.0° |
b = 16.4049 (7) Å | µ = 0.08 mm−1 |
c = 17.0658 (7) Å | T = 100 K |
V = 2727.6 (2) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3131 independent reflections |
Radiation source: Fine–focus sealed tube | 2816 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ϕ and ω scans | θmax = 26.4°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −12→12 |
Tmin = 0.981, Tmax = 0.990 | k = −20→20 |
27681 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: Full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.373P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3131 reflections | Δρmax = 0.17 e Å−3 |
352 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: 2419 Friedel pairs were merged |
Primary atom site location: structure-invariant direct methods |
C34H31N5 | V = 2727.6 (2) Å3 |
Mr = 509.64 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.7427 (4) Å | µ = 0.08 mm−1 |
b = 16.4049 (7) Å | T = 100 K |
c = 17.0658 (7) Å | 0.25 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3131 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2816 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.990 | Rint = 0.060 |
27681 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.17 e Å−3 |
3131 reflections | Δρmin = −0.17 e Å−3 |
352 parameters | Absolute structure: 2419 Friedel pairs were merged |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.66064 (19) | 0.61819 (11) | 0.23890 (10) | 0.0161 (4) | |
H1A | 0.6227 | 0.6561 | 0.2793 | 0.019* | |
N2 | 0.70778 (16) | 0.53934 (9) | 0.26954 (8) | 0.0163 (3) | |
C3 | 0.71251 (19) | 0.48417 (10) | 0.20155 (10) | 0.0164 (4) | |
H3A | 0.8095 | 0.4679 | 0.1904 | 0.020* | |
C4 | 0.65972 (18) | 0.54197 (11) | 0.13717 (10) | 0.0159 (4) | |
H4A | 0.6216 | 0.5137 | 0.0900 | 0.019* | |
N5 | 0.77088 (16) | 0.60077 (9) | 0.11985 (8) | 0.0163 (3) | |
C6 | 0.77956 (19) | 0.65473 (11) | 0.18816 (10) | 0.0164 (4) | |
H6A | 0.8698 | 0.6478 | 0.2153 | 0.020* | |
N7 | 0.56002 (15) | 0.58946 (9) | 0.18081 (8) | 0.0158 (3) | |
C21 | 0.80912 (18) | 0.53697 (11) | 0.32784 (10) | 0.0165 (4) | |
C22 | 0.82474 (19) | 0.60204 (11) | 0.38008 (10) | 0.0184 (4) | |
H22A | 0.7685 | 0.6490 | 0.3746 | 0.022* | |
C23 | 0.9213 (2) | 0.59879 (12) | 0.43974 (11) | 0.0228 (4) | |
H23A | 0.9299 | 0.6433 | 0.4750 | 0.027* | |
C24 | 1.0055 (2) | 0.53119 (13) | 0.44833 (11) | 0.0246 (4) | |
H24A | 1.0723 | 0.5293 | 0.4889 | 0.030* | |
C25 | 0.9907 (2) | 0.46637 (13) | 0.39682 (11) | 0.0240 (4) | |
H25A | 1.0482 | 0.4199 | 0.4021 | 0.029* | |
C26 | 0.89300 (19) | 0.46840 (12) | 0.33759 (11) | 0.0209 (4) | |
H26A | 0.8830 | 0.4230 | 0.3035 | 0.025* | |
N31 | 0.62863 (16) | 0.41223 (9) | 0.21507 (9) | 0.0181 (3) | |
H31N | 0.5424 | 0.4272 | 0.2275 | 0.022* | |
C32 | 0.6379 (2) | 0.34644 (11) | 0.16289 (10) | 0.0180 (4) | |
C33 | 0.7651 (2) | 0.31662 (12) | 0.13812 (12) | 0.0266 (4) | |
H33A | 0.8470 | 0.3432 | 0.1541 | 0.032* | |
C34 | 0.7723 (2) | 0.24833 (13) | 0.09027 (13) | 0.0333 (5) | |
H34A | 0.8595 | 0.2287 | 0.0739 | 0.040* | |
C35 | 0.6546 (2) | 0.20845 (12) | 0.06601 (13) | 0.0316 (5) | |
H35A | 0.6604 | 0.1617 | 0.0333 | 0.038* | |
C36 | 0.5284 (2) | 0.23776 (12) | 0.09010 (11) | 0.0259 (5) | |
H36A | 0.4469 | 0.2108 | 0.0739 | 0.031* | |
C37 | 0.5193 (2) | 0.30628 (11) | 0.13780 (10) | 0.0207 (4) | |
H37A | 0.4318 | 0.3259 | 0.1535 | 0.025* | |
C51 | 0.88738 (19) | 0.57525 (11) | 0.07785 (10) | 0.0157 (4) | |
C52 | 0.8730 (2) | 0.51490 (11) | 0.02028 (11) | 0.0204 (4) | |
H52A | 0.7861 | 0.4902 | 0.0118 | 0.024* | |
C53 | 0.9849 (2) | 0.49093 (12) | −0.02443 (11) | 0.0236 (4) | |
H53A | 0.9735 | 0.4505 | −0.0637 | 0.028* | |
C54 | 1.1129 (2) | 0.52537 (12) | −0.01237 (11) | 0.0231 (4) | |
H54A | 1.1898 | 0.5078 | −0.0421 | 0.028* | |
C55 | 1.1272 (2) | 0.58591 (12) | 0.04381 (11) | 0.0227 (4) | |
H55A | 1.2143 | 0.6106 | 0.0517 | 0.027* | |
C56 | 1.0161 (2) | 0.61088 (11) | 0.08871 (11) | 0.0194 (4) | |
H56A | 1.0277 | 0.6524 | 0.1270 | 0.023* | |
N61 | 0.76301 (16) | 0.73814 (9) | 0.16149 (9) | 0.0179 (3) | |
H61N | 0.6972 | 0.7403 | 0.1234 | 0.021* | |
C62 | 0.76841 (19) | 0.80551 (11) | 0.21117 (10) | 0.0173 (4) | |
C63 | 0.6967 (2) | 0.87592 (11) | 0.18892 (12) | 0.0217 (4) | |
H63A | 0.6411 | 0.8750 | 0.1432 | 0.026* | |
C64 | 0.7058 (2) | 0.94660 (12) | 0.23260 (13) | 0.0286 (5) | |
H64A | 0.6594 | 0.9944 | 0.2156 | 0.034* | |
C65 | 0.7825 (2) | 0.94832 (13) | 0.30131 (13) | 0.0328 (5) | |
H65A | 0.7871 | 0.9965 | 0.3320 | 0.039* | |
C66 | 0.8519 (2) | 0.87877 (13) | 0.32424 (13) | 0.0302 (5) | |
H66A | 0.9041 | 0.8796 | 0.3712 | 0.036* | |
C67 | 0.8468 (2) | 0.80757 (12) | 0.27986 (11) | 0.0221 (4) | |
H67A | 0.8963 | 0.7606 | 0.2961 | 0.027* | |
C71 | 0.48078 (18) | 0.65048 (11) | 0.14169 (11) | 0.0168 (4) | |
C72 | 0.49051 (19) | 0.66496 (11) | 0.06118 (11) | 0.0196 (4) | |
H72A | 0.5510 | 0.6332 | 0.0299 | 0.024* | |
C73 | 0.4118 (2) | 0.72570 (12) | 0.02695 (12) | 0.0236 (4) | |
H73A | 0.4190 | 0.7353 | −0.0278 | 0.028* | |
C74 | 0.3232 (2) | 0.77245 (12) | 0.07143 (13) | 0.0276 (5) | |
H74A | 0.2707 | 0.8146 | 0.0477 | 0.033* | |
C75 | 0.3116 (2) | 0.75718 (12) | 0.15116 (13) | 0.0273 (5) | |
H75A | 0.2506 | 0.7890 | 0.1820 | 0.033* | |
C76 | 0.3880 (2) | 0.69600 (11) | 0.18629 (11) | 0.0216 (4) | |
H76A | 0.3773 | 0.6850 | 0.2406 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0168 (9) | 0.0159 (8) | 0.0157 (8) | 0.0015 (7) | −0.0011 (7) | −0.0009 (7) |
N2 | 0.0196 (8) | 0.0148 (7) | 0.0146 (7) | 0.0016 (6) | −0.0009 (6) | −0.0003 (6) |
C3 | 0.0168 (9) | 0.0161 (8) | 0.0164 (8) | −0.0004 (7) | 0.0015 (7) | −0.0008 (7) |
C4 | 0.0150 (8) | 0.0169 (9) | 0.0157 (8) | −0.0011 (7) | −0.0001 (7) | −0.0002 (7) |
N5 | 0.0177 (8) | 0.0163 (7) | 0.0149 (7) | −0.0015 (6) | 0.0002 (6) | −0.0020 (6) |
C6 | 0.0182 (9) | 0.0159 (8) | 0.0152 (8) | 0.0003 (7) | −0.0011 (8) | 0.0003 (7) |
N7 | 0.0170 (7) | 0.0174 (7) | 0.0131 (7) | 0.0011 (6) | −0.0001 (6) | −0.0009 (6) |
C21 | 0.0157 (9) | 0.0201 (9) | 0.0137 (8) | −0.0013 (7) | 0.0018 (7) | 0.0031 (7) |
C22 | 0.0199 (9) | 0.0190 (9) | 0.0163 (9) | −0.0019 (8) | 0.0004 (7) | 0.0023 (8) |
C23 | 0.0219 (10) | 0.0303 (11) | 0.0163 (9) | −0.0072 (9) | 0.0017 (8) | 0.0017 (8) |
C24 | 0.0162 (9) | 0.0405 (11) | 0.0172 (9) | −0.0028 (9) | −0.0010 (8) | 0.0060 (9) |
C25 | 0.0178 (9) | 0.0317 (11) | 0.0224 (9) | 0.0038 (9) | 0.0027 (8) | 0.0079 (9) |
C26 | 0.0217 (9) | 0.0223 (10) | 0.0187 (9) | 0.0017 (8) | 0.0026 (8) | 0.0016 (8) |
N31 | 0.0170 (8) | 0.0155 (7) | 0.0219 (8) | −0.0007 (7) | 0.0038 (7) | −0.0006 (6) |
C32 | 0.0237 (10) | 0.0141 (8) | 0.0163 (8) | −0.0017 (8) | 0.0013 (8) | 0.0035 (7) |
C33 | 0.0218 (10) | 0.0210 (9) | 0.0370 (11) | −0.0018 (8) | 0.0028 (9) | −0.0053 (9) |
C34 | 0.0308 (11) | 0.0253 (10) | 0.0439 (13) | 0.0029 (10) | 0.0108 (11) | −0.0081 (10) |
C35 | 0.0433 (13) | 0.0203 (10) | 0.0313 (11) | −0.0041 (10) | 0.0087 (10) | −0.0062 (9) |
C36 | 0.0334 (11) | 0.0235 (10) | 0.0209 (10) | −0.0091 (9) | −0.0009 (9) | −0.0001 (8) |
C37 | 0.0240 (10) | 0.0196 (9) | 0.0186 (9) | −0.0029 (8) | 0.0036 (8) | 0.0035 (8) |
C51 | 0.0172 (9) | 0.0157 (8) | 0.0143 (8) | 0.0025 (7) | 0.0014 (7) | 0.0039 (7) |
C52 | 0.0184 (9) | 0.0218 (9) | 0.0209 (9) | −0.0019 (8) | 0.0011 (8) | −0.0005 (8) |
C53 | 0.0257 (10) | 0.0223 (10) | 0.0229 (9) | 0.0034 (8) | 0.0028 (9) | −0.0045 (8) |
C54 | 0.0200 (10) | 0.0270 (10) | 0.0224 (9) | 0.0075 (9) | 0.0053 (8) | 0.0046 (8) |
C55 | 0.0150 (9) | 0.0261 (10) | 0.0269 (10) | −0.0008 (8) | −0.0016 (8) | 0.0070 (8) |
C56 | 0.0211 (9) | 0.0180 (9) | 0.0189 (9) | −0.0010 (8) | −0.0029 (8) | 0.0025 (8) |
N61 | 0.0227 (8) | 0.0167 (7) | 0.0143 (7) | −0.0021 (7) | −0.0032 (7) | 0.0000 (6) |
C62 | 0.0169 (9) | 0.0172 (9) | 0.0177 (8) | −0.0048 (8) | 0.0051 (7) | −0.0014 (7) |
C63 | 0.0199 (10) | 0.0218 (9) | 0.0236 (10) | −0.0031 (8) | 0.0045 (8) | 0.0014 (8) |
C64 | 0.0281 (11) | 0.0193 (10) | 0.0386 (12) | −0.0029 (9) | 0.0112 (10) | −0.0005 (9) |
C65 | 0.0328 (12) | 0.0255 (11) | 0.0401 (12) | −0.0085 (9) | 0.0115 (11) | −0.0153 (10) |
C66 | 0.0249 (11) | 0.0385 (12) | 0.0272 (10) | −0.0102 (10) | 0.0017 (9) | −0.0116 (9) |
C67 | 0.0189 (9) | 0.0261 (10) | 0.0213 (9) | −0.0031 (8) | −0.0005 (8) | −0.0029 (8) |
C71 | 0.0153 (9) | 0.0155 (9) | 0.0196 (9) | −0.0025 (7) | −0.0031 (7) | −0.0001 (7) |
C72 | 0.0161 (9) | 0.0218 (9) | 0.0210 (9) | −0.0036 (8) | −0.0015 (8) | 0.0004 (8) |
C73 | 0.0246 (10) | 0.0251 (10) | 0.0213 (10) | −0.0080 (8) | −0.0056 (9) | 0.0051 (8) |
C74 | 0.0291 (11) | 0.0192 (10) | 0.0346 (12) | 0.0003 (9) | −0.0126 (10) | 0.0030 (9) |
C75 | 0.0272 (11) | 0.0211 (10) | 0.0335 (11) | 0.0069 (8) | −0.0070 (9) | −0.0081 (9) |
C76 | 0.0245 (10) | 0.0219 (10) | 0.0184 (9) | 0.0015 (8) | −0.0033 (8) | −0.0018 (8) |
C1—N2 | 1.469 (2) | C36—C37 | 1.391 (3) |
C1—N7 | 1.472 (2) | C36—H36A | 0.9500 |
C1—C6 | 1.566 (2) | C37—H37A | 0.9500 |
C1—H1A | 1.0000 | C51—C56 | 1.396 (3) |
N2—C21 | 1.402 (2) | C51—C52 | 1.402 (3) |
N2—C3 | 1.472 (2) | C52—C53 | 1.387 (3) |
C3—N31 | 1.454 (2) | C52—H52A | 0.9500 |
C3—C4 | 1.540 (2) | C53—C54 | 1.385 (3) |
C3—H3A | 1.0000 | C53—H53A | 0.9500 |
C4—N7 | 1.451 (2) | C54—C55 | 1.388 (3) |
C4—N5 | 1.480 (2) | C54—H54A | 0.9500 |
C4—H4A | 1.0000 | C55—C56 | 1.388 (3) |
N5—C51 | 1.406 (2) | C55—H55A | 0.9500 |
N5—C6 | 1.466 (2) | C56—H56A | 0.9500 |
C6—N61 | 1.451 (2) | N61—C62 | 1.394 (2) |
C6—H6A | 1.0000 | N61—H61N | 0.9140 |
N7—C71 | 1.430 (2) | C62—C67 | 1.399 (3) |
C21—C22 | 1.399 (2) | C62—C63 | 1.402 (3) |
C21—C26 | 1.400 (3) | C63—C64 | 1.381 (3) |
C22—C23 | 1.387 (3) | C63—H63A | 0.9500 |
C22—H22A | 0.9500 | C64—C65 | 1.390 (3) |
C23—C24 | 1.387 (3) | C64—H64A | 0.9500 |
C23—H23A | 0.9500 | C65—C66 | 1.383 (3) |
C24—C25 | 1.387 (3) | C65—H65A | 0.9500 |
C24—H24A | 0.9500 | C66—C67 | 1.393 (3) |
C25—C26 | 1.389 (3) | C66—H66A | 0.9500 |
C25—H25A | 0.9500 | C67—H67A | 0.9500 |
C26—H26A | 0.9500 | C71—C72 | 1.397 (2) |
N31—C32 | 1.402 (2) | C71—C76 | 1.398 (3) |
N31—H31N | 0.9006 | C72—C73 | 1.386 (3) |
C32—C37 | 1.398 (3) | C72—H72A | 0.9500 |
C32—C33 | 1.398 (3) | C73—C74 | 1.382 (3) |
C33—C34 | 1.388 (3) | C73—H73A | 0.9500 |
C33—H33A | 0.9500 | C74—C75 | 1.388 (3) |
C34—C35 | 1.384 (3) | C74—H74A | 0.9500 |
C34—H34A | 0.9500 | C75—C76 | 1.386 (3) |
C35—C36 | 1.383 (3) | C75—H75A | 0.9500 |
C35—H35A | 0.9500 | C76—H76A | 0.9500 |
N2—C1—N7 | 99.56 (13) | C34—C35—H35A | 120.5 |
N2—C1—C6 | 107.62 (14) | C35—C36—C37 | 120.77 (19) |
N7—C1—C6 | 104.06 (13) | C35—C36—H36A | 119.6 |
N2—C1—H1A | 114.7 | C37—C36—H36A | 119.6 |
N7—C1—H1A | 114.7 | C36—C37—C32 | 120.52 (18) |
C6—C1—H1A | 114.7 | C36—C37—H37A | 119.7 |
C21—N2—C1 | 119.82 (15) | C32—C37—H37A | 119.7 |
C21—N2—C3 | 121.33 (15) | C56—C51—C52 | 118.57 (17) |
C1—N2—C3 | 105.70 (13) | C56—C51—N5 | 122.19 (16) |
N31—C3—N2 | 110.87 (14) | C52—C51—N5 | 119.16 (16) |
N31—C3—C4 | 115.18 (15) | C53—C52—C51 | 120.51 (18) |
N2—C3—C4 | 99.98 (13) | C53—C52—H52A | 119.7 |
N31—C3—H3A | 110.1 | C51—C52—H52A | 119.7 |
N2—C3—H3A | 110.1 | C54—C53—C52 | 120.67 (18) |
C4—C3—H3A | 110.1 | C54—C53—H53A | 119.7 |
N7—C4—N5 | 104.03 (13) | C52—C53—H53A | 119.7 |
N7—C4—C3 | 100.84 (13) | C53—C54—C55 | 119.03 (18) |
N5—C4—C3 | 107.43 (14) | C53—C54—H54A | 120.5 |
N7—C4—H4A | 114.4 | C55—C54—H54A | 120.5 |
N5—C4—H4A | 114.4 | C54—C55—C56 | 120.97 (18) |
C3—C4—H4A | 114.4 | C54—C55—H55A | 119.5 |
C51—N5—C6 | 122.58 (15) | C56—C55—H55A | 119.5 |
C51—N5—C4 | 119.89 (14) | C55—C56—C51 | 120.24 (17) |
C6—N5—C4 | 106.07 (13) | C55—C56—H56A | 119.9 |
N61—C6—N5 | 108.27 (13) | C51—C56—H56A | 119.9 |
N61—C6—C1 | 116.89 (15) | C62—N61—C6 | 123.55 (14) |
N5—C6—C1 | 99.55 (13) | C62—N61—H61N | 115.4 |
N61—C6—H6A | 110.5 | C6—N61—H61N | 109.8 |
N5—C6—H6A | 110.5 | N61—C62—C67 | 123.32 (17) |
C1—C6—H6A | 110.5 | N61—C62—C63 | 118.01 (16) |
C71—N7—C4 | 119.85 (14) | C67—C62—C63 | 118.60 (17) |
C71—N7—C1 | 116.75 (14) | C64—C63—C62 | 120.89 (18) |
C4—N7—C1 | 94.11 (13) | C64—C63—H63A | 119.6 |
C22—C21—C26 | 118.28 (16) | C62—C63—H63A | 119.6 |
C22—C21—N2 | 120.50 (16) | C63—C64—C65 | 120.44 (19) |
C26—C21—N2 | 121.17 (16) | C63—C64—H64A | 119.8 |
C23—C22—C21 | 120.80 (17) | C65—C64—H64A | 119.8 |
C23—C22—H22A | 119.6 | C66—C65—C64 | 118.98 (19) |
C21—C22—H22A | 119.6 | C66—C65—H65A | 120.5 |
C24—C23—C22 | 120.62 (18) | C64—C65—H65A | 120.5 |
C24—C23—H23A | 119.7 | C65—C66—C67 | 121.38 (19) |
C22—C23—H23A | 119.7 | C65—C66—H66A | 119.3 |
C23—C24—C25 | 118.97 (18) | C67—C66—H66A | 119.3 |
C23—C24—H24A | 120.5 | C66—C67—C62 | 119.67 (19) |
C25—C24—H24A | 120.5 | C66—C67—H67A | 120.2 |
C24—C25—C26 | 120.94 (19) | C62—C67—H67A | 120.2 |
C24—C25—H25A | 119.5 | C72—C71—C76 | 119.23 (17) |
C26—C25—H25A | 119.5 | C72—C71—N7 | 122.79 (17) |
C25—C26—C21 | 120.38 (18) | C76—C71—N7 | 117.96 (16) |
C25—C26—H26A | 119.8 | C73—C72—C71 | 119.93 (18) |
C21—C26—H26A | 119.8 | C73—C72—H72A | 120.0 |
C32—N31—C3 | 119.19 (15) | C71—C72—H72A | 120.0 |
C32—N31—H31N | 114.8 | C74—C73—C72 | 120.86 (18) |
C3—N31—H31N | 109.9 | C74—C73—H73A | 119.6 |
C37—C32—C33 | 118.39 (16) | C72—C73—H73A | 119.6 |
C37—C32—N31 | 120.28 (17) | C73—C74—C75 | 119.27 (19) |
C33—C32—N31 | 121.24 (17) | C73—C74—H74A | 120.4 |
C34—C33—C32 | 120.37 (19) | C75—C74—H74A | 120.4 |
C34—C33—H33A | 119.8 | C76—C75—C74 | 120.74 (19) |
C32—C33—H33A | 119.8 | C76—C75—H75A | 119.6 |
C35—C34—C33 | 121.0 (2) | C74—C75—H75A | 119.6 |
C35—C34—H34A | 119.5 | C75—C76—C71 | 119.91 (18) |
C33—C34—H34A | 119.5 | C75—C76—H76A | 120.0 |
C36—C35—C34 | 118.93 (18) | C71—C76—H76A | 120.0 |
C36—C35—H35A | 120.5 | ||
N7—C1—N2—C21 | 179.24 (14) | C3—N31—C32—C37 | −137.18 (17) |
C6—C1—N2—C21 | 71.05 (19) | C3—N31—C32—C33 | 46.4 (2) |
N7—C1—N2—C3 | 37.63 (16) | C37—C32—C33—C34 | −0.5 (3) |
C6—C1—N2—C3 | −70.55 (16) | N31—C32—C33—C34 | 176.03 (18) |
C21—N2—C3—N31 | 95.41 (19) | C32—C33—C34—C35 | 0.1 (3) |
C1—N2—C3—N31 | −123.70 (15) | C33—C34—C35—C36 | 0.1 (3) |
C21—N2—C3—C4 | −142.62 (16) | C34—C35—C36—C37 | 0.1 (3) |
C1—N2—C3—C4 | −1.74 (17) | C35—C36—C37—C32 | −0.6 (3) |
N31—C3—C4—N7 | 83.41 (17) | C33—C32—C37—C36 | 0.7 (3) |
N2—C3—C4—N7 | −35.43 (16) | N31—C32—C37—C36 | −175.83 (16) |
N31—C3—C4—N5 | −167.99 (14) | C6—N5—C51—C56 | −12.2 (3) |
N2—C3—C4—N5 | 73.16 (16) | C4—N5—C51—C56 | −150.44 (16) |
N7—C4—N5—C51 | 179.59 (14) | C6—N5—C51—C52 | 171.14 (15) |
C3—C4—N5—C51 | 73.24 (19) | C4—N5—C51—C52 | 32.9 (2) |
N7—C4—N5—C6 | 35.30 (16) | C56—C51—C52—C53 | 0.4 (3) |
C3—C4—N5—C6 | −71.05 (16) | N5—C51—C52—C53 | 177.24 (17) |
C51—N5—C6—N61 | 93.00 (19) | C51—C52—C53—C54 | 0.8 (3) |
C4—N5—C6—N61 | −123.91 (15) | C52—C53—C54—C55 | −1.7 (3) |
C51—N5—C6—C1 | −144.42 (16) | C53—C54—C55—C56 | 1.3 (3) |
C4—N5—C6—C1 | −1.33 (16) | C54—C55—C56—C51 | −0.1 (3) |
N2—C1—C6—N61 | −171.17 (14) | C52—C51—C56—C55 | −0.8 (3) |
N7—C1—C6—N61 | 83.81 (17) | N5—C51—C56—C55 | −177.50 (16) |
N2—C1—C6—N5 | 72.62 (15) | N5—C6—N61—C62 | −178.74 (16) |
N7—C1—C6—N5 | −32.40 (16) | C1—C6—N61—C62 | 70.0 (2) |
N5—C4—N7—C71 | 70.92 (18) | C6—N61—C62—C67 | 29.8 (3) |
C3—C4—N7—C71 | −177.85 (14) | C6—N61—C62—C63 | −153.34 (17) |
N5—C4—N7—C1 | −53.25 (15) | N61—C62—C63—C64 | −175.32 (18) |
C3—C4—N7—C1 | 57.98 (14) | C67—C62—C63—C64 | 1.7 (3) |
N2—C1—N7—C71 | 174.81 (14) | C62—C63—C64—C65 | −2.4 (3) |
C6—C1—N7—C71 | −74.18 (17) | C63—C64—C65—C66 | 1.4 (3) |
N2—C1—N7—C4 | −58.68 (14) | C64—C65—C66—C67 | 0.3 (3) |
C6—C1—N7—C4 | 52.34 (15) | C65—C66—C67—C62 | −1.0 (3) |
C1—N2—C21—C22 | 27.5 (2) | N61—C62—C67—C66 | 176.84 (18) |
C3—N2—C21—C22 | 163.02 (15) | C63—C62—C67—C66 | 0.0 (3) |
C1—N2—C21—C26 | −155.37 (17) | C4—N7—C71—C72 | 2.7 (2) |
C3—N2—C21—C26 | −19.8 (2) | C1—N7—C71—C72 | 115.13 (19) |
C26—C21—C22—C23 | 0.3 (3) | C4—N7—C71—C76 | −178.65 (16) |
N2—C21—C22—C23 | 177.56 (16) | C1—N7—C71—C76 | −66.2 (2) |
C21—C22—C23—C24 | 0.7 (3) | C76—C71—C72—C73 | 2.1 (3) |
C22—C23—C24—C25 | −0.7 (3) | N7—C71—C72—C73 | −179.29 (16) |
C23—C24—C25—C26 | −0.3 (3) | C71—C72—C73—C74 | −0.1 (3) |
C24—C25—C26—C21 | 1.3 (3) | C72—C73—C74—C75 | −1.0 (3) |
C22—C21—C26—C25 | −1.3 (3) | C73—C74—C75—C76 | 0.2 (3) |
N2—C21—C26—C25 | −178.49 (16) | C74—C75—C76—C71 | 1.8 (3) |
N2—C3—N31—C32 | −169.47 (15) | C72—C71—C76—C75 | −2.9 (3) |
C4—C3—N31—C32 | 77.9 (2) | N7—C71—C76—C75 | 178.37 (17) |
Experimental details
Crystal data | |
Chemical formula | C34H31N5 |
Mr | 509.64 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.7427 (4), 16.4049 (7), 17.0658 (7) |
V (Å3) | 2727.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.25 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.981, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27681, 3131, 2816 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.072, 1.01 |
No. of reflections | 3131 |
No. of parameters | 352 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.17 |
Absolute structure | 2419 Friedel pairs were merged |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).
Parameters | nN31 → σ*C3—N2 | nN2 → σ*C2—N7 | nN7 → σ*C4—N5 | nN61 → σ*C6—N5 |
N'—C | 1.454 (2) | 1.469 (2) | 1.451 (2) | 1.451 (2) |
C—N'' | 1.472 (2) | 1.472 (2) | 1.480 (2) | 1.466 (2) |
N'—C—N'' | 110.87 (14) | 99.56 (13) | 104.03 (13) | 108.27 (13) |
Pyr N'a,b | 343.89 | 346.85 (25) | 330.71 (19) | 348.75 |
Pyr N'' | 346.85 (25) | 330.71 (19) | 348.54 (24) | 348.54 (24) |
Notes: (a) Pyr denotes the pyramidality of the N atoms, the sum of the three angles around the N atom. (b) s.u. values are estimated from the sum of s.u. values when they are available. |
Acknowledgements
We thank the Chemistry Group of Imam Hossain University for their cooperation.
References
Alphen, J. V. (1933). Recl. Trav. Chim. Pays-Bas, 52, 47–53. Google Scholar
Alvaro, G., Fabio, R. D., Gualandi, A., Fiorell, C., Monari, D., Savoia, D. & Zoli, L. (2007). Tetrahedron, 63, 12446–12453. Web of Science CSD CrossRef CAS Google Scholar
Archelas, A. & Morin, C. (1984). Tetrahedron Lett. 25, 1277–1278. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS, Madison,Wisconsin, USA. Google Scholar
Davies, J. W., Durrant, M. L., Walker, M. P. & Malpass, J. R. (1992). Tetrahedron, 48, 4379–4398. CrossRef CAS Web of Science Google Scholar
Kliegman, J. M. & Barnes, R. K. (1970). J. Org. Chem. 35, 3140–3143. CrossRef CAS Web of Science Google Scholar
Neunhoeffer, V. H. & Fruhauf, H. W. (1969). Tetrahedron Lett. 37, 3151–3154. Google Scholar
Neunhoeffer, V. H. & Fruhauf, H. W. (1970). Tetrahedron Lett. 38, 3355–3356. CrossRef Google Scholar
Nielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A. & Zoli, L. (1998). Tetrahedron, 54, 11793–11812. CrossRef CAS Google Scholar
Nielsen, A. T., Nissan, R. A., Cafin, A. P., Gilardi, R. D. & Gorge, C. F. (1992). J. Org. Chem. 57, 6756–6759. CSD CrossRef CAS Web of Science Google Scholar
Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. & &Anderson, J. F. (1990). J. Org. Chem. 55, 1459–1466. CSD CrossRef CAS Web of Science Google Scholar
Nitravati, D. D. & Sikhibhushan, D. (1939). Proc. Natl Acad. Sci. India, 9, 93–98. Google Scholar
Nitravati, D. D. & Sikhibhushan, D. (1941). Chem. Abstr. 35, 1033. Google Scholar
Potts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619–3626. CrossRef CAS Web of Science Google Scholar
Potts, K. T. & Husain, S. (1972). J. Org. Chem. 37, 2049–2050. CrossRef CAS Web of Science Google Scholar
Reed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969–3987. CrossRef CAS Web of Science Google Scholar
Senderowitz, H., Aped, P. & Fuchs, B. (1992). Tetrahedron, 48, 1131–1144. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanforth, S. P., Tarbit, B. & Watson, M. D. (2002). Tetrahedron Lett. 43, 6015–6017. Web of Science CrossRef CAS Google Scholar
Taheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316. Web of Science CSD CrossRef IUCr Journals Google Scholar
Taheri, A. & Moosavi, S. M. (2009). Acta Cryst. C65, o115–o117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watson, W. H., Nagl, A., Marchand, A. P., Vidyasagar, V. & Goodin, D. B. (1990). Acta Cryst. C46, 1127–1129. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are different kinds of polyazapolycyclic skeletons (Nielsen et al., 1990) constituted of saturated rings with multiple N atoms, that can be utilized for high–density and energetic compounds syntheses (Nielsen et al., 1992). In cage skeleton, 2,4,6,8,10,12–hexabenzyl–2,4,6,8,10,12–hexaazaisowurtzitane is precursor for 2,4,6,8,10,12–hexanitro–2,4,6,8,10,12–hexaazaisowurtzitane, which is highly energetic compound (Nielsen et al., 1998). In norbornane skeletons, azanorbornane or azabicyclo[2.2.1]heptane (Archelas & Morin, 1984) and diazanorbornane derivatives (Alvaro et al., 2007) have been synthesized and characterized so far, but triazanorbornane derivatives have seldom been reported (Nitravati & Sikhibhushan, 1939, 1941; Alphen, 1933). The syntheses and molecular structures of triazabicyclo[2.2.1]heptaneshave been presented in a few papers without using X–ray crystal structure analysis (Potts & Husain, 1972; Potts et al., 1974; Neunhoeffer & Fruhauf, 1969,1970; Stanforth et al., 2002).
As a part of our continuing efforts on the development of polyazapolycyclics, structural stability and synthesis of 2,5,7–triazabicyclo[2.2.1]heptan derivative (Taheri & Moosavi, 2009) via a catalytic reaction between aminoethane derivatives (Kliegman & Barnes, 1970; Taheri & Moosavi, 2008) and glyoxal were recently described another crystal system of the title compound without any solvent on the crystal packing in which geometric parameters for stability of the skeleton is scrutinized by study of anomeric interactions.
The molecular structure of I shown in Fig. 1 has racemic configuration, all S– and all R–configuration molecules and composed of a six–membered piperazine ring and an N atom bridging between the C1 and C4 situations, norbornane skeleton construction. Notwithstanding the presence of two NH groups, viz. N31 and N61, and five N atoms carrying lone–pair electrons potentially available for H–bond creation, there are not actually intra– or intermolecular N—H···N or C—H···N hydrogen bonds. As shown in the scheme, the skeleton has a good local twofold symmetry, namely through the N7 bridge and almost perpendicular to the least–squares plane of the piperazine ring. It is noteworthy that the symmetry involves not only the skeleton but also the peripheral phenyl groups, except for that attached to the bridging N7 atom.
The anomeric effect in N—C—N systems investigated extensively (Senderowitz et al., 1992), occurred between a lone pair on N and an antiperiplanar σ* orbital of the adjacent C—N bond (nN→σ*C—N), negative hyperconjugation (Reed & Schleyer, 1988).
There are four dissimilar anomeric effects manifested by the bond distances and N–atom pyramidality on four N'—C—N" fragments or nN'→σ*C—N" systems. Within the N'—C—N" unit, the N'—C bond is shorter, than the C—N" bond. On the other hand, the pyramidality of N' (the sum of the three bond angles around N') is larger than that of N". These geometric parameters related to the anomeric effect are shown in Tabl. 1. Among them, the nN5→σ*C4—N7 system shows a distinguished anomeric interaction and the largest bond–length difference [0.029 (2)Å], which is comparable to that reported for an other crystal system (Taheri & Mossavi, 2009).
However, the pyramidality differences in the N'—C—N" units are not so indicative. The differences within the N2—C2—N7 and N7—C4—N5 systems are 16.14 (16) and 17.83 (15)°, respectively, and these are much larger, than those for the N31—C3—N2 and N61—C6—N5 groups, 2.95 and 0.21°, respectively. Furthermore, the calculated pyramidalities for atoms N31 and N61 are not accurate because they include H atoms, whose positions were determined from adifference Fourier synthesis. Thus, the anomeric effect on the pyramidality is not clear in this molecule. It could be that, the anomeric effect on the angle is buried among the steric effects caused by the crowding of the substituent groups, which would strongly affect the molecular structure.
Reflecting the local twofold symmetry, the corresponding N atoms in this symmetric skeleton (N2 and N5, N31 and N61) have nearly the same pyramidality. The pyramidality angle of N7 [330.71 (19)°] is rather small, and the attached phenyl group is inclined from the local twofold axis in the direction of atoms N2, C3 and N31. Corresponding to this inclination, the C72—C71—N7 angle [122.79 (17)°] is distorted from theideal value of 120°, which is attributable to the short contact between the voluminous phenyl ring and the skeleton. For example, the H76···H1 separation (atom C1 is the bridgehead) is only 2.281Å . The same distortion is seen in another norbornane derivative [122.5 (4)°; Watson et al., 1990] for the phenyl ring on the bridging N7 atom.
The angle at the bridging N atom, C1—N7—C4, is 94.11 (13)°. Although this bridge angle is comparable to those reported for norbornane and diazanorbornane (Davies et al., 1992), it still indicates the presence of ring strain.