organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N3,N6,2,5,7-Penta­phenyl-2,5,7-tri­aza­bi­cyclo­[2.2.1]heptane-3,6-di­amine

aDepartment of Chemistry, Imam Hossein University, Tehran, Iran
*Correspondence e-mail: amir.tahery1@gmail.com

(Received 8 June 2009; accepted 24 June 2009; online 1 July 2009)

In the title compound, C34H31N5, the observed molecular geometry suggests that anomeric effects are present in terms of short C—N bond lengths and reduced pyramidality of the N atoms.

Related literature

For the synthesis of the title compound and the structure of another 2,5,7–triaza­bicyclo­[2.2.1]heptan derivative, see: Taheri & Moosavi (2009[Taheri, A. & Moosavi, S. M. (2009). Acta Cryst. C65, o115-o117.]). For its precursors, see: Kliegman & Barnes (1970[Kliegman, J. M. & Barnes, R. K. (1970). J. Org. Chem. 35, 3140-3143.]); Taheri & Moosavi (2008[Taheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316.]). For general background to aza­norbornanes, see Alphen, (1933[Alphen, J. V. (1933). Recl. Trav. Chim. Pays-Bas, 52, 47-53.]); Alvaro et al. (2007[Alvaro, G., Fabio, R. D., Gualandi, A., Fiorell, C., Monari, D., Savoia, D. & Zoli, L. (2007). Tetrahedron, 63, 12446-12453.]); Archelas & Morin (1984[Archelas, A. & Morin, C. (1984). Tetrahedron Lett. 25, 1277-1278.]); Nitravati & Sikhibhushan (1939[Nitravati, D. D. & Sikhibhushan, D. (1939). Proc. Natl Acad. Sci. India, 9, 93-98.], 1941[Nitravati, D. D. & Sikhibhushan, D. (1941). Chem. Abstr. 35, 1033.]); Potts & Husain (1972[Potts, K. T. & Husain, S. (1972). J. Org. Chem. 37, 2049-2050.]); Potts et al. (1974[Potts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619-3626.]); Neunhoeffer & Fruhauf (1969[Neunhoeffer, V. H. & Fruhauf, H. W. (1969). Tetrahedron Lett. 37, 3151-3154.], 1970[Neunhoeffer, V. H. & Fruhauf, H. W. (1970). Tetrahedron Lett. 38, 3355-3356.]); Stanforth et al. (2002[Stanforth, S. P., Tarbit, B. & Watson, M. D. (2002). Tetrahedron Lett. 43, 6015-6017.]). For the syntheses of polyaza­polycyclic compounds, see: Nielsen et al. (1990[Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. & &Anderson, J. F. (1990). J. Org. Chem. 55, 1459-1466.], 1992[Nielsen, A. T., Nissan, R. A., Cafin, A. P., Gilardi, R. D. & Gorge, C. F. (1992). J. Org. Chem. 57, 6756-6759.], 1998[Nielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A. & Zoli, L. (1998). Tetrahedron, 54, 11793-11812.]). For the anomeric effect, see: Senderowitz et al. (1992[Senderowitz, H., Aped, P. & Fuchs, B. (1992). Tetrahedron, 48, 1131-1144.]); Reed & Schleyer (1988[Reed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969-3987.]); Watson et al. (1990[Watson, W. H., Nagl, A., Marchand, A. P., Vidyasagar, V. & Goodin, D. B. (1990). Acta Cryst. C46, 1127-1129.]); Davies et al. (1992[Davies, J. W., Durrant, M. L., Walker, M. P. & Malpass, J. R. (1992). Tetrahedron, 48, 4379-4398.]).

[Scheme 1]

Experimental

Crystal data
  • C34H31N5

  • Mr = 509.64

  • Orthorhombic, P 21 21 21

  • a = 9.7427 (4) Å

  • b = 16.4049 (7) Å

  • c = 17.0658 (7) Å

  • V = 2727.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.990

  • 27681 measured reflections

  • 3131 independent reflections

  • 2816 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.01

  • 3131 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS, Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are different kinds of polyazapolycyclic skeletons (Nielsen et al., 1990) constituted of saturated rings with multiple N atoms, that can be utilized for high–density and energetic compounds syntheses (Nielsen et al., 1992). In cage skeleton, 2,4,6,8,10,12–hexabenzyl–2,4,6,8,10,12–hexaazaisowurtzitane is precursor for 2,4,6,8,10,12–hexanitro–2,4,6,8,10,12–hexaazaisowurtzitane, which is highly energetic compound (Nielsen et al., 1998). In norbornane skeletons, azanorbornane or azabicyclo[2.2.1]heptane (Archelas & Morin, 1984) and diazanorbornane derivatives (Alvaro et al., 2007) have been synthesized and characterized so far, but triazanorbornane derivatives have seldom been reported (Nitravati & Sikhibhushan, 1939, 1941; Alphen, 1933). The syntheses and molecular structures of triazabicyclo[2.2.1]heptaneshave been presented in a few papers without using X–ray crystal structure analysis (Potts & Husain, 1972; Potts et al., 1974; Neunhoeffer & Fruhauf, 1969,1970; Stanforth et al., 2002).

As a part of our continuing efforts on the development of polyazapolycyclics, structural stability and synthesis of 2,5,7–triazabicyclo[2.2.1]heptan derivative (Taheri & Moosavi, 2009) via a catalytic reaction between aminoethane derivatives (Kliegman & Barnes, 1970; Taheri & Moosavi, 2008) and glyoxal were recently described another crystal system of the title compound without any solvent on the crystal packing in which geometric parameters for stability of the skeleton is scrutinized by study of anomeric interactions.

The molecular structure of I shown in Fig. 1 has racemic configuration, all S– and all R–configuration molecules and composed of a six–membered piperazine ring and an N atom bridging between the C1 and C4 situations, norbornane skeleton construction. Notwithstanding the presence of two NH groups, viz. N31 and N61, and five N atoms carrying lone–pair electrons potentially available for H–bond creation, there are not actually intra– or intermolecular N—H···N or C—H···N hydrogen bonds. As shown in the scheme, the skeleton has a good local twofold symmetry, namely through the N7 bridge and almost perpendicular to the least–squares plane of the piperazine ring. It is noteworthy that the symmetry involves not only the skeleton but also the peripheral phenyl groups, except for that attached to the bridging N7 atom.

The anomeric effect in N—C—N systems investigated extensively (Senderowitz et al., 1992), occurred between a lone pair on N and an antiperiplanar σ* orbital of the adjacent C—N bond (nNσ*C—N), negative hyperconjugation (Reed & Schleyer, 1988).

There are four dissimilar anomeric effects manifested by the bond distances and N–atom pyramidality on four N'—C—N" fragments or nN'σ*C—N" systems. Within the N'—C—N" unit, the N'—C bond is shorter, than the C—N" bond. On the other hand, the pyramidality of N' (the sum of the three bond angles around N') is larger than that of N". These geometric parameters related to the anomeric effect are shown in Tabl. 1. Among them, the nN5σ*C4—N7 system shows a distinguished anomeric interaction and the largest bond–length difference [0.029 (2)Å], which is comparable to that reported for an other crystal system (Taheri & Mossavi, 2009).

However, the pyramidality differences in the N'—C—N" units are not so indicative. The differences within the N2—C2—N7 and N7—C4—N5 systems are 16.14 (16) and 17.83 (15)°, respectively, and these are much larger, than those for the N31—C3—N2 and N61—C6—N5 groups, 2.95 and 0.21°, respectively. Furthermore, the calculated pyramidalities for atoms N31 and N61 are not accurate because they include H atoms, whose positions were determined from adifference Fourier synthesis. Thus, the anomeric effect on the pyramidality is not clear in this molecule. It could be that, the anomeric effect on the angle is buried among the steric effects caused by the crowding of the substituent groups, which would strongly affect the molecular structure.

Reflecting the local twofold symmetry, the corresponding N atoms in this symmetric skeleton (N2 and N5, N31 and N61) have nearly the same pyramidality. The pyramidality angle of N7 [330.71 (19)°] is rather small, and the attached phenyl group is inclined from the local twofold axis in the direction of atoms N2, C3 and N31. Corresponding to this inclination, the C72—C71—N7 angle [122.79 (17)°] is distorted from theideal value of 120°, which is attributable to the short contact between the voluminous phenyl ring and the skeleton. For example, the H76···H1 separation (atom C1 is the bridgehead) is only 2.281Å . The same distortion is seen in another norbornane derivative [122.5 (4)°; Watson et al., 1990] for the phenyl ring on the bridging N7 atom.

The angle at the bridging N atom, C1—N7—C4, is 94.11 (13)°. Although this bridge angle is comparable to those reported for norbornane and diazanorbornane (Davies et al., 1992), it still indicates the presence of ring strain.

Related literature top

For the synthesis of the title compound and the structure of another 2,5,7–triazabicyclo[2.2.1]heptan derivative, see: Taheri & Moosavi (2009). For its precursors, see: Kliegman & Barnes (1970); Taheri & Moosavi (2008). For general background to azanorbornanes, see Alphen, (1933); Alvaro et al. (2007); Archelas & Morin (1984); Nitravati & Sikhibhushan (1939, 1941); Potts & Husain (1972); Potts et al. (1974); Neunhoeffer & Fruhauf (1969, 1970); Stanforth et al. (2002). For the syntheses of polyazapolycyclic compounds, see: Nielsen et al. (1990, 1992, 1998). For the anomeric effect, see: Senderowitz et al. (1992); Reed & Schleyer (1988); Watson et al. (1990); Davies et al. (1992).

Experimental top

Aqueous glyoxal (40% v/v, 1.15 ml, 0.01 mol) was added dropwise to a stirred solution of 1,1',2,2'–tetrakis(phenylamino)ethane (3.94 g, 0.01 mol) in ethanol (50 ml). The solution temperature was kept at 273 K during the reaction. The mixture was put aside for 24 h at a temperature of 278–283 K. The resulting white precipitate was filtered off and washed with cold ethanol to give 2.53 g (55% yield) of I (m.p. 428 K).

1H NMR (CDCl3): 1H 6.59–7.30 (m, 25H, CHAr), 5.69 (s, 2H, CH), 4.93 (d, 2H, J = 10 Hz, CH), 3.69 (d, 2H, J = 10 Hz, NH). Addition of D2O to the NMR sample caused the NH signals to disappeared and the CH doublet quickly converted to a singlet.

13C NMR (CDCl3): 13C 144.8, 144.2, 143.6,129.3, 129.7, 122.1, 119.4, 118.7, 117.4, 113.7, 113.2 (CHAr), 76.0 (CH), 72.4 (CH).

Refinement top

The H atoms of the NH–groups were located in the difference Fourier map and refined in rigid model with fixed Uiso(H) = 1.2Ueq(N) parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed Uiso(H) = 1.2Ueq(C) parameters. Friedel opposites were merged

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
N3,N6,2,5,7-pentaphenyl-2,5,7-triazabicyclo[2.2.1]heptane- 3,6-diamine top
Crystal data top
C34H31N5F(000) = 1080
Mr = 509.64Dx = 1.241 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4705 reflections
a = 9.7427 (4) Åθ = 2.4–22.0°
b = 16.4049 (7) ŵ = 0.08 mm1
c = 17.0658 (7) ÅT = 100 K
V = 2727.6 (2) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3131 independent reflections
Radiation source: Fine–focus sealed tube2816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.981, Tmax = 0.990k = 2020
27681 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: FullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.373P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3131 reflectionsΔρmax = 0.17 e Å3
352 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: 2419 Friedel pairs were merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C34H31N5V = 2727.6 (2) Å3
Mr = 509.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7427 (4) ŵ = 0.08 mm1
b = 16.4049 (7) ÅT = 100 K
c = 17.0658 (7) Å0.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3131 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2816 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.060
27681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3131 reflectionsΔρmin = 0.17 e Å3
352 parametersAbsolute structure: 2419 Friedel pairs were merged
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66064 (19)0.61819 (11)0.23890 (10)0.0161 (4)
H1A0.62270.65610.27930.019*
N20.70778 (16)0.53934 (9)0.26954 (8)0.0163 (3)
C30.71251 (19)0.48417 (10)0.20155 (10)0.0164 (4)
H3A0.80950.46790.19040.020*
C40.65972 (18)0.54197 (11)0.13717 (10)0.0159 (4)
H4A0.62160.51370.09000.019*
N50.77088 (16)0.60077 (9)0.11985 (8)0.0163 (3)
C60.77956 (19)0.65473 (11)0.18816 (10)0.0164 (4)
H6A0.86980.64780.21530.020*
N70.56002 (15)0.58946 (9)0.18081 (8)0.0158 (3)
C210.80912 (18)0.53697 (11)0.32784 (10)0.0165 (4)
C220.82474 (19)0.60204 (11)0.38008 (10)0.0184 (4)
H22A0.76850.64900.37460.022*
C230.9213 (2)0.59879 (12)0.43974 (11)0.0228 (4)
H23A0.92990.64330.47500.027*
C241.0055 (2)0.53119 (13)0.44833 (11)0.0246 (4)
H24A1.07230.52930.48890.030*
C250.9907 (2)0.46637 (13)0.39682 (11)0.0240 (4)
H25A1.04820.41990.40210.029*
C260.89300 (19)0.46840 (12)0.33759 (11)0.0209 (4)
H26A0.88300.42300.30350.025*
N310.62863 (16)0.41223 (9)0.21507 (9)0.0181 (3)
H31N0.54240.42720.22750.022*
C320.6379 (2)0.34644 (11)0.16289 (10)0.0180 (4)
C330.7651 (2)0.31662 (12)0.13812 (12)0.0266 (4)
H33A0.84700.34320.15410.032*
C340.7723 (2)0.24833 (13)0.09027 (13)0.0333 (5)
H34A0.85950.22870.07390.040*
C350.6546 (2)0.20845 (12)0.06601 (13)0.0316 (5)
H35A0.66040.16170.03330.038*
C360.5284 (2)0.23776 (12)0.09010 (11)0.0259 (5)
H36A0.44690.21080.07390.031*
C370.5193 (2)0.30628 (11)0.13780 (10)0.0207 (4)
H37A0.43180.32590.15350.025*
C510.88738 (19)0.57525 (11)0.07785 (10)0.0157 (4)
C520.8730 (2)0.51490 (11)0.02028 (11)0.0204 (4)
H52A0.78610.49020.01180.024*
C530.9849 (2)0.49093 (12)0.02443 (11)0.0236 (4)
H53A0.97350.45050.06370.028*
C541.1129 (2)0.52537 (12)0.01237 (11)0.0231 (4)
H54A1.18980.50780.04210.028*
C551.1272 (2)0.58591 (12)0.04381 (11)0.0227 (4)
H55A1.21430.61060.05170.027*
C561.0161 (2)0.61088 (11)0.08871 (11)0.0194 (4)
H56A1.02770.65240.12700.023*
N610.76301 (16)0.73814 (9)0.16149 (9)0.0179 (3)
H61N0.69720.74030.12340.021*
C620.76841 (19)0.80551 (11)0.21117 (10)0.0173 (4)
C630.6967 (2)0.87592 (11)0.18892 (12)0.0217 (4)
H63A0.64110.87500.14320.026*
C640.7058 (2)0.94660 (12)0.23260 (13)0.0286 (5)
H64A0.65940.99440.21560.034*
C650.7825 (2)0.94832 (13)0.30131 (13)0.0328 (5)
H65A0.78710.99650.33200.039*
C660.8519 (2)0.87877 (13)0.32424 (13)0.0302 (5)
H66A0.90410.87960.37120.036*
C670.8468 (2)0.80757 (12)0.27986 (11)0.0221 (4)
H67A0.89630.76060.29610.027*
C710.48078 (18)0.65048 (11)0.14169 (11)0.0168 (4)
C720.49051 (19)0.66496 (11)0.06118 (11)0.0196 (4)
H72A0.55100.63320.02990.024*
C730.4118 (2)0.72570 (12)0.02695 (12)0.0236 (4)
H73A0.41900.73530.02780.028*
C740.3232 (2)0.77245 (12)0.07143 (13)0.0276 (5)
H74A0.27070.81460.04770.033*
C750.3116 (2)0.75718 (12)0.15116 (13)0.0273 (5)
H75A0.25060.78900.18200.033*
C760.3880 (2)0.69600 (11)0.18629 (11)0.0216 (4)
H76A0.37730.68500.24060.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0168 (9)0.0159 (8)0.0157 (8)0.0015 (7)0.0011 (7)0.0009 (7)
N20.0196 (8)0.0148 (7)0.0146 (7)0.0016 (6)0.0009 (6)0.0003 (6)
C30.0168 (9)0.0161 (8)0.0164 (8)0.0004 (7)0.0015 (7)0.0008 (7)
C40.0150 (8)0.0169 (9)0.0157 (8)0.0011 (7)0.0001 (7)0.0002 (7)
N50.0177 (8)0.0163 (7)0.0149 (7)0.0015 (6)0.0002 (6)0.0020 (6)
C60.0182 (9)0.0159 (8)0.0152 (8)0.0003 (7)0.0011 (8)0.0003 (7)
N70.0170 (7)0.0174 (7)0.0131 (7)0.0011 (6)0.0001 (6)0.0009 (6)
C210.0157 (9)0.0201 (9)0.0137 (8)0.0013 (7)0.0018 (7)0.0031 (7)
C220.0199 (9)0.0190 (9)0.0163 (9)0.0019 (8)0.0004 (7)0.0023 (8)
C230.0219 (10)0.0303 (11)0.0163 (9)0.0072 (9)0.0017 (8)0.0017 (8)
C240.0162 (9)0.0405 (11)0.0172 (9)0.0028 (9)0.0010 (8)0.0060 (9)
C250.0178 (9)0.0317 (11)0.0224 (9)0.0038 (9)0.0027 (8)0.0079 (9)
C260.0217 (9)0.0223 (10)0.0187 (9)0.0017 (8)0.0026 (8)0.0016 (8)
N310.0170 (8)0.0155 (7)0.0219 (8)0.0007 (7)0.0038 (7)0.0006 (6)
C320.0237 (10)0.0141 (8)0.0163 (8)0.0017 (8)0.0013 (8)0.0035 (7)
C330.0218 (10)0.0210 (9)0.0370 (11)0.0018 (8)0.0028 (9)0.0053 (9)
C340.0308 (11)0.0253 (10)0.0439 (13)0.0029 (10)0.0108 (11)0.0081 (10)
C350.0433 (13)0.0203 (10)0.0313 (11)0.0041 (10)0.0087 (10)0.0062 (9)
C360.0334 (11)0.0235 (10)0.0209 (10)0.0091 (9)0.0009 (9)0.0001 (8)
C370.0240 (10)0.0196 (9)0.0186 (9)0.0029 (8)0.0036 (8)0.0035 (8)
C510.0172 (9)0.0157 (8)0.0143 (8)0.0025 (7)0.0014 (7)0.0039 (7)
C520.0184 (9)0.0218 (9)0.0209 (9)0.0019 (8)0.0011 (8)0.0005 (8)
C530.0257 (10)0.0223 (10)0.0229 (9)0.0034 (8)0.0028 (9)0.0045 (8)
C540.0200 (10)0.0270 (10)0.0224 (9)0.0075 (9)0.0053 (8)0.0046 (8)
C550.0150 (9)0.0261 (10)0.0269 (10)0.0008 (8)0.0016 (8)0.0070 (8)
C560.0211 (9)0.0180 (9)0.0189 (9)0.0010 (8)0.0029 (8)0.0025 (8)
N610.0227 (8)0.0167 (7)0.0143 (7)0.0021 (7)0.0032 (7)0.0000 (6)
C620.0169 (9)0.0172 (9)0.0177 (8)0.0048 (8)0.0051 (7)0.0014 (7)
C630.0199 (10)0.0218 (9)0.0236 (10)0.0031 (8)0.0045 (8)0.0014 (8)
C640.0281 (11)0.0193 (10)0.0386 (12)0.0029 (9)0.0112 (10)0.0005 (9)
C650.0328 (12)0.0255 (11)0.0401 (12)0.0085 (9)0.0115 (11)0.0153 (10)
C660.0249 (11)0.0385 (12)0.0272 (10)0.0102 (10)0.0017 (9)0.0116 (9)
C670.0189 (9)0.0261 (10)0.0213 (9)0.0031 (8)0.0005 (8)0.0029 (8)
C710.0153 (9)0.0155 (9)0.0196 (9)0.0025 (7)0.0031 (7)0.0001 (7)
C720.0161 (9)0.0218 (9)0.0210 (9)0.0036 (8)0.0015 (8)0.0004 (8)
C730.0246 (10)0.0251 (10)0.0213 (10)0.0080 (8)0.0056 (9)0.0051 (8)
C740.0291 (11)0.0192 (10)0.0346 (12)0.0003 (9)0.0126 (10)0.0030 (9)
C750.0272 (11)0.0211 (10)0.0335 (11)0.0069 (8)0.0070 (9)0.0081 (9)
C760.0245 (10)0.0219 (10)0.0184 (9)0.0015 (8)0.0033 (8)0.0018 (8)
Geometric parameters (Å, º) top
C1—N21.469 (2)C36—C371.391 (3)
C1—N71.472 (2)C36—H36A0.9500
C1—C61.566 (2)C37—H37A0.9500
C1—H1A1.0000C51—C561.396 (3)
N2—C211.402 (2)C51—C521.402 (3)
N2—C31.472 (2)C52—C531.387 (3)
C3—N311.454 (2)C52—H52A0.9500
C3—C41.540 (2)C53—C541.385 (3)
C3—H3A1.0000C53—H53A0.9500
C4—N71.451 (2)C54—C551.388 (3)
C4—N51.480 (2)C54—H54A0.9500
C4—H4A1.0000C55—C561.388 (3)
N5—C511.406 (2)C55—H55A0.9500
N5—C61.466 (2)C56—H56A0.9500
C6—N611.451 (2)N61—C621.394 (2)
C6—H6A1.0000N61—H61N0.9140
N7—C711.430 (2)C62—C671.399 (3)
C21—C221.399 (2)C62—C631.402 (3)
C21—C261.400 (3)C63—C641.381 (3)
C22—C231.387 (3)C63—H63A0.9500
C22—H22A0.9500C64—C651.390 (3)
C23—C241.387 (3)C64—H64A0.9500
C23—H23A0.9500C65—C661.383 (3)
C24—C251.387 (3)C65—H65A0.9500
C24—H24A0.9500C66—C671.393 (3)
C25—C261.389 (3)C66—H66A0.9500
C25—H25A0.9500C67—H67A0.9500
C26—H26A0.9500C71—C721.397 (2)
N31—C321.402 (2)C71—C761.398 (3)
N31—H31N0.9006C72—C731.386 (3)
C32—C371.398 (3)C72—H72A0.9500
C32—C331.398 (3)C73—C741.382 (3)
C33—C341.388 (3)C73—H73A0.9500
C33—H33A0.9500C74—C751.388 (3)
C34—C351.384 (3)C74—H74A0.9500
C34—H34A0.9500C75—C761.386 (3)
C35—C361.383 (3)C75—H75A0.9500
C35—H35A0.9500C76—H76A0.9500
N2—C1—N799.56 (13)C34—C35—H35A120.5
N2—C1—C6107.62 (14)C35—C36—C37120.77 (19)
N7—C1—C6104.06 (13)C35—C36—H36A119.6
N2—C1—H1A114.7C37—C36—H36A119.6
N7—C1—H1A114.7C36—C37—C32120.52 (18)
C6—C1—H1A114.7C36—C37—H37A119.7
C21—N2—C1119.82 (15)C32—C37—H37A119.7
C21—N2—C3121.33 (15)C56—C51—C52118.57 (17)
C1—N2—C3105.70 (13)C56—C51—N5122.19 (16)
N31—C3—N2110.87 (14)C52—C51—N5119.16 (16)
N31—C3—C4115.18 (15)C53—C52—C51120.51 (18)
N2—C3—C499.98 (13)C53—C52—H52A119.7
N31—C3—H3A110.1C51—C52—H52A119.7
N2—C3—H3A110.1C54—C53—C52120.67 (18)
C4—C3—H3A110.1C54—C53—H53A119.7
N7—C4—N5104.03 (13)C52—C53—H53A119.7
N7—C4—C3100.84 (13)C53—C54—C55119.03 (18)
N5—C4—C3107.43 (14)C53—C54—H54A120.5
N7—C4—H4A114.4C55—C54—H54A120.5
N5—C4—H4A114.4C54—C55—C56120.97 (18)
C3—C4—H4A114.4C54—C55—H55A119.5
C51—N5—C6122.58 (15)C56—C55—H55A119.5
C51—N5—C4119.89 (14)C55—C56—C51120.24 (17)
C6—N5—C4106.07 (13)C55—C56—H56A119.9
N61—C6—N5108.27 (13)C51—C56—H56A119.9
N61—C6—C1116.89 (15)C62—N61—C6123.55 (14)
N5—C6—C199.55 (13)C62—N61—H61N115.4
N61—C6—H6A110.5C6—N61—H61N109.8
N5—C6—H6A110.5N61—C62—C67123.32 (17)
C1—C6—H6A110.5N61—C62—C63118.01 (16)
C71—N7—C4119.85 (14)C67—C62—C63118.60 (17)
C71—N7—C1116.75 (14)C64—C63—C62120.89 (18)
C4—N7—C194.11 (13)C64—C63—H63A119.6
C22—C21—C26118.28 (16)C62—C63—H63A119.6
C22—C21—N2120.50 (16)C63—C64—C65120.44 (19)
C26—C21—N2121.17 (16)C63—C64—H64A119.8
C23—C22—C21120.80 (17)C65—C64—H64A119.8
C23—C22—H22A119.6C66—C65—C64118.98 (19)
C21—C22—H22A119.6C66—C65—H65A120.5
C24—C23—C22120.62 (18)C64—C65—H65A120.5
C24—C23—H23A119.7C65—C66—C67121.38 (19)
C22—C23—H23A119.7C65—C66—H66A119.3
C23—C24—C25118.97 (18)C67—C66—H66A119.3
C23—C24—H24A120.5C66—C67—C62119.67 (19)
C25—C24—H24A120.5C66—C67—H67A120.2
C24—C25—C26120.94 (19)C62—C67—H67A120.2
C24—C25—H25A119.5C72—C71—C76119.23 (17)
C26—C25—H25A119.5C72—C71—N7122.79 (17)
C25—C26—C21120.38 (18)C76—C71—N7117.96 (16)
C25—C26—H26A119.8C73—C72—C71119.93 (18)
C21—C26—H26A119.8C73—C72—H72A120.0
C32—N31—C3119.19 (15)C71—C72—H72A120.0
C32—N31—H31N114.8C74—C73—C72120.86 (18)
C3—N31—H31N109.9C74—C73—H73A119.6
C37—C32—C33118.39 (16)C72—C73—H73A119.6
C37—C32—N31120.28 (17)C73—C74—C75119.27 (19)
C33—C32—N31121.24 (17)C73—C74—H74A120.4
C34—C33—C32120.37 (19)C75—C74—H74A120.4
C34—C33—H33A119.8C76—C75—C74120.74 (19)
C32—C33—H33A119.8C76—C75—H75A119.6
C35—C34—C33121.0 (2)C74—C75—H75A119.6
C35—C34—H34A119.5C75—C76—C71119.91 (18)
C33—C34—H34A119.5C75—C76—H76A120.0
C36—C35—C34118.93 (18)C71—C76—H76A120.0
C36—C35—H35A120.5
N7—C1—N2—C21179.24 (14)C3—N31—C32—C37137.18 (17)
C6—C1—N2—C2171.05 (19)C3—N31—C32—C3346.4 (2)
N7—C1—N2—C337.63 (16)C37—C32—C33—C340.5 (3)
C6—C1—N2—C370.55 (16)N31—C32—C33—C34176.03 (18)
C21—N2—C3—N3195.41 (19)C32—C33—C34—C350.1 (3)
C1—N2—C3—N31123.70 (15)C33—C34—C35—C360.1 (3)
C21—N2—C3—C4142.62 (16)C34—C35—C36—C370.1 (3)
C1—N2—C3—C41.74 (17)C35—C36—C37—C320.6 (3)
N31—C3—C4—N783.41 (17)C33—C32—C37—C360.7 (3)
N2—C3—C4—N735.43 (16)N31—C32—C37—C36175.83 (16)
N31—C3—C4—N5167.99 (14)C6—N5—C51—C5612.2 (3)
N2—C3—C4—N573.16 (16)C4—N5—C51—C56150.44 (16)
N7—C4—N5—C51179.59 (14)C6—N5—C51—C52171.14 (15)
C3—C4—N5—C5173.24 (19)C4—N5—C51—C5232.9 (2)
N7—C4—N5—C635.30 (16)C56—C51—C52—C530.4 (3)
C3—C4—N5—C671.05 (16)N5—C51—C52—C53177.24 (17)
C51—N5—C6—N6193.00 (19)C51—C52—C53—C540.8 (3)
C4—N5—C6—N61123.91 (15)C52—C53—C54—C551.7 (3)
C51—N5—C6—C1144.42 (16)C53—C54—C55—C561.3 (3)
C4—N5—C6—C11.33 (16)C54—C55—C56—C510.1 (3)
N2—C1—C6—N61171.17 (14)C52—C51—C56—C550.8 (3)
N7—C1—C6—N6183.81 (17)N5—C51—C56—C55177.50 (16)
N2—C1—C6—N572.62 (15)N5—C6—N61—C62178.74 (16)
N7—C1—C6—N532.40 (16)C1—C6—N61—C6270.0 (2)
N5—C4—N7—C7170.92 (18)C6—N61—C62—C6729.8 (3)
C3—C4—N7—C71177.85 (14)C6—N61—C62—C63153.34 (17)
N5—C4—N7—C153.25 (15)N61—C62—C63—C64175.32 (18)
C3—C4—N7—C157.98 (14)C67—C62—C63—C641.7 (3)
N2—C1—N7—C71174.81 (14)C62—C63—C64—C652.4 (3)
C6—C1—N7—C7174.18 (17)C63—C64—C65—C661.4 (3)
N2—C1—N7—C458.68 (14)C64—C65—C66—C670.3 (3)
C6—C1—N7—C452.34 (15)C65—C66—C67—C621.0 (3)
C1—N2—C21—C2227.5 (2)N61—C62—C67—C66176.84 (18)
C3—N2—C21—C22163.02 (15)C63—C62—C67—C660.0 (3)
C1—N2—C21—C26155.37 (17)C4—N7—C71—C722.7 (2)
C3—N2—C21—C2619.8 (2)C1—N7—C71—C72115.13 (19)
C26—C21—C22—C230.3 (3)C4—N7—C71—C76178.65 (16)
N2—C21—C22—C23177.56 (16)C1—N7—C71—C7666.2 (2)
C21—C22—C23—C240.7 (3)C76—C71—C72—C732.1 (3)
C22—C23—C24—C250.7 (3)N7—C71—C72—C73179.29 (16)
C23—C24—C25—C260.3 (3)C71—C72—C73—C740.1 (3)
C24—C25—C26—C211.3 (3)C72—C73—C74—C751.0 (3)
C22—C21—C26—C251.3 (3)C73—C74—C75—C760.2 (3)
N2—C21—C26—C25178.49 (16)C74—C75—C76—C711.8 (3)
N2—C3—N31—C32169.47 (15)C72—C71—C76—C752.9 (3)
C4—C3—N31—C3277.9 (2)N7—C71—C76—C75178.37 (17)

Experimental details

Crystal data
Chemical formulaC34H31N5
Mr509.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.7427 (4), 16.4049 (7), 17.0658 (7)
V3)2727.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
27681, 3131, 2816
Rint0.060
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.01
No. of reflections3131
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structure2419 Friedel pairs were merged

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Geometric parameters relating anomeric interactions in N'—C—N" fragments (Å, °) top
ParametersnN31 σ*C3—N2nN2 σ*C2—N7nN7 σ*C4—N5nN61 σ*C6—N5
N'—C1.454 (2)1.469 (2)1.451 (2)1.451 (2)
C—N''1.472 (2)1.472 (2)1.480 (2)1.466 (2)
N'—C—N''110.87 (14)99.56 (13)104.03 (13)108.27 (13)
Pyr N'a,b343.89346.85 (25)330.71 (19)348.75
Pyr N''346.85 (25)330.71 (19)348.54 (24)348.54 (24)
Notes: (a) Pyr denotes the pyramidality of the N atoms, the sum of the three angles around the N atom. (b) s.u. values are estimated from the sum of s.u. values when they are available.
 

Acknowledgements

We thank the Chemistry Group of Imam Hossain University for their cooperation.

References

First citationAlphen, J. V. (1933). Recl. Trav. Chim. Pays-Bas, 52, 47–53.  Google Scholar
First citationAlvaro, G., Fabio, R. D., Gualandi, A., Fiorell, C., Monari, D., Savoia, D. & Zoli, L. (2007). Tetrahedron, 63, 12446–12453.  Web of Science CSD CrossRef CAS Google Scholar
First citationArchelas, A. & Morin, C. (1984). Tetrahedron Lett. 25, 1277–1278.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS, Madison,Wisconsin, USA.  Google Scholar
First citationDavies, J. W., Durrant, M. L., Walker, M. P. & Malpass, J. R. (1992). Tetrahedron, 48, 4379–4398.  CrossRef CAS Web of Science Google Scholar
First citationKliegman, J. M. & Barnes, R. K. (1970). J. Org. Chem. 35, 3140–3143.  CrossRef CAS Web of Science Google Scholar
First citationNeunhoeffer, V. H. & Fruhauf, H. W. (1969). Tetrahedron Lett. 37, 3151–3154.  Google Scholar
First citationNeunhoeffer, V. H. & Fruhauf, H. W. (1970). Tetrahedron Lett. 38, 3355–3356.  CrossRef Google Scholar
First citationNielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A. & Zoli, L. (1998). Tetrahedron, 54, 11793–11812.  CrossRef CAS Google Scholar
First citationNielsen, A. T., Nissan, R. A., Cafin, A. P., Gilardi, R. D. & Gorge, C. F. (1992). J. Org. Chem. 57, 6756–6759.  CSD CrossRef CAS Web of Science Google Scholar
First citationNielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. & &Anderson, J. F. (1990). J. Org. Chem. 55, 1459–1466.  CSD CrossRef CAS Web of Science Google Scholar
First citationNitravati, D. D. & Sikhibhushan, D. (1939). Proc. Natl Acad. Sci. India, 9, 93–98.  Google Scholar
First citationNitravati, D. D. & Sikhibhushan, D. (1941). Chem. Abstr. 35, 1033.  Google Scholar
First citationPotts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619–3626.  CrossRef CAS Web of Science Google Scholar
First citationPotts, K. T. & Husain, S. (1972). J. Org. Chem. 37, 2049–2050.  CrossRef CAS Web of Science Google Scholar
First citationReed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969–3987.  CrossRef CAS Web of Science Google Scholar
First citationSenderowitz, H., Aped, P. & Fuchs, B. (1992). Tetrahedron, 48, 1131–1144.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanforth, S. P., Tarbit, B. & Watson, M. D. (2002). Tetrahedron Lett. 43, 6015–6017.  Web of Science CrossRef CAS Google Scholar
First citationTaheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTaheri, A. & Moosavi, S. M. (2009). Acta Cryst. C65, o115–o117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatson, W. H., Nagl, A., Marchand, A. P., Vidyasagar, V. & Goodin, D. B. (1990). Acta Cryst. C46, 1127–1129.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds