organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-1-methyl­sulfinyl-2-phenyl­naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, C19H13BrO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the naphthofuran unit. The phenyl ring is rotated out of the naphthofuran plane, making a dihedral angle of 42.2 (1)°. The crystal structure is stabilized by two inter­molecular C—H⋯π inter­actions, and by non-classical inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds.

Related literature

For the crystal structures of similar 2-phenyl­naphtho[2,1-b]furan derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812.]). For details of the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13BrO2S

  • Mr = 385.26

  • Monoclinic, P 21 /c

  • a = 6.0007 (4) Å

  • b = 22.699 (2) Å

  • c = 11.2151 (8) Å

  • β = 91.267 (1)°

  • V = 1527.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 273 K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.538, Tmax = 0.765

  • 13412 measured reflections

  • 3476 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.09

  • 3476 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.93 2.70 3.377 (4) 131
C19—H19BCg2ii 0.96 2.99 3.497 (4) 114
C18—H18⋯O2iii 0.93 2.54 3.283 (4) 137
C16—H16⋯Briv 0.93 2.97 3.823 (4) 153
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x-2, y, z-1. Cg1 and Cg2 are the centroids of the C2/C3/C8–C11 benzene and C13–C18 benzene rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing naphthofuran skeleton have attracted considerable interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of 2-phenylnaphtho[2,1-b]furan analogues, viz. 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009a) and 7-bromo-2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009b). Now we present the crystal structure of the title compound (I) (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.045 (3)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle in I formed by the plane of the naphthofuran ring and the plane of 2-phenyl ring is 42.2 (1)°. The molecular packing (Fig. 2) is stabilized by two intermolecular C–H···π interactions; the first between an H atom of the 2-phenyl ring and the central benzene ring of the naphthofuran fragment (C14–H14···Cg1i), the second between the methyl H atom of the methylsulfinyl substituent and the phenyl ring (C19–H19B···Cg2ii), respectively (Table 1 and Fig. 2; Cg1 and Cg2 are the centroids of the C2/C3/C8/C9/C10/C11 benzene and C13-C18 benzene rings). Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. In addition, weak non-classical intermolecular C–H···O and C–H···Br hydrogen bonds in the structure were observed (Table 1 and Fig. 3).

Related literature top

For the crystal structures of similar 2-phenylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2009a,b). For details of the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005). Cg1 and Cg2 are the centroids of the C2/C3/C8–C11 benzene and C13–C18 benzene rings, respectively.

Experimental top

The 77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 7-bromo-1-methylsulfanyl-2-phenylnaphtho[2,1-b]furan (258 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1 : 2 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 503-504 K; Rf = 0.72 (hexane-ethyl acetate, 1 : 2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The C–H···π interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroids. Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 3] Fig. 3. The C–H···O and C–H···Br interactions (dotted lines) in the title compound. Symmetry codes: (iii) x, -y+3/2, z-1/2; (iv) x-2, y, z-1; (v) x, -y+3/2, z+1/2; (vi) x+2, y, z+1.
7-Bromo-1-methylsulfinyl-2-phenylnaphtho[2,1-b]furan top
Crystal data top
C19H13BrO2SF(000) = 776
Mr = 385.26Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3117 reflections
a = 6.0007 (4) Åθ = 2.6–27.3°
b = 22.699 (2) ŵ = 2.84 mm1
c = 11.2151 (8) ÅT = 273 K
β = 91.267 (1)°Block, colourless
V = 1527.2 (2) Å30.25 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3476 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 2929
Tmin = 0.538, Tmax = 0.765l = 1414
13412 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0234P)2 + 2.3626P]
where P = (Fo2 + 2Fc2)/3
3476 reflections(Δ/σ)max = 0.002
209 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C19H13BrO2SV = 1527.2 (2) Å3
Mr = 385.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0007 (4) ŵ = 2.84 mm1
b = 22.699 (2) ÅT = 273 K
c = 11.2151 (8) Å0.25 × 0.12 × 0.10 mm
β = 91.267 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3476 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2280 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.765Rint = 0.056
13412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
3476 reflectionsΔρmin = 0.49 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.04085 (7)0.614541 (18)1.06514 (4)0.03289 (13)
S0.04668 (16)0.71912 (4)0.66608 (8)0.0231 (2)
O10.0349 (4)0.54760 (10)0.6267 (2)0.0208 (5)
O20.0802 (4)0.74221 (11)0.7894 (2)0.0316 (7)
C10.0664 (6)0.64129 (15)0.6686 (3)0.0191 (7)
C20.2146 (6)0.60190 (15)0.7355 (3)0.0195 (8)
C30.4067 (6)0.60777 (15)0.8130 (3)0.0194 (7)
C40.4927 (6)0.66186 (16)0.8559 (3)0.0234 (8)
H40.42100.69670.83430.028*
C50.6794 (6)0.66431 (17)0.9287 (3)0.0255 (9)
H50.73430.70030.95600.031*
C60.7857 (6)0.61148 (17)0.9610 (3)0.0243 (8)
C70.7101 (6)0.55824 (16)0.9228 (3)0.0237 (8)
H70.78540.52410.94550.028*
C80.5162 (6)0.55461 (16)0.8484 (3)0.0210 (8)
C90.4331 (6)0.49849 (16)0.8115 (3)0.0230 (8)
H90.50840.46460.83570.028*
C100.2455 (6)0.49362 (15)0.7415 (3)0.0233 (8)
H100.18830.45710.71930.028*
C110.1437 (6)0.54571 (15)0.7050 (3)0.0196 (8)
C120.0772 (6)0.60640 (15)0.6050 (3)0.0199 (8)
C130.2527 (6)0.61732 (16)0.5143 (3)0.0206 (7)
C140.4437 (6)0.58201 (15)0.5112 (3)0.0226 (8)
H140.45950.55210.56710.027*
C150.6085 (6)0.59122 (17)0.4259 (3)0.0273 (9)
H150.73490.56750.42410.033*
C160.5855 (7)0.63605 (17)0.3422 (3)0.0286 (9)
H160.69850.64300.28590.034*
C170.3945 (7)0.67033 (16)0.3429 (3)0.0284 (9)
H170.37850.69980.28610.034*
C180.2277 (6)0.66085 (15)0.4275 (3)0.0229 (8)
H180.09850.68350.42670.028*
C190.2979 (7)0.73401 (16)0.5874 (3)0.0284 (9)
H19A0.33140.77530.59210.043*
H19B0.27790.72280.50530.043*
H19C0.41870.71190.62260.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0306 (2)0.0375 (2)0.0302 (2)0.0047 (2)0.00788 (15)0.0030 (2)
S0.0258 (5)0.0177 (5)0.0260 (5)0.0017 (4)0.0018 (4)0.0027 (4)
O10.0258 (14)0.0156 (12)0.0210 (13)0.0033 (10)0.0000 (11)0.0003 (10)
O20.0401 (17)0.0287 (15)0.0262 (15)0.0017 (13)0.0037 (12)0.0113 (12)
C10.0228 (19)0.0155 (17)0.0191 (18)0.0026 (15)0.0037 (14)0.0009 (14)
C20.0244 (19)0.0190 (19)0.0154 (17)0.0003 (15)0.0047 (14)0.0001 (14)
C30.0215 (18)0.0202 (18)0.0168 (17)0.0005 (15)0.0030 (14)0.0011 (15)
C40.028 (2)0.0196 (19)0.022 (2)0.0003 (16)0.0027 (16)0.0015 (15)
C50.028 (2)0.026 (2)0.022 (2)0.0066 (17)0.0003 (16)0.0022 (16)
C60.0241 (19)0.031 (2)0.0177 (17)0.0044 (18)0.0007 (14)0.0000 (17)
C70.027 (2)0.025 (2)0.0191 (18)0.0043 (17)0.0010 (15)0.0022 (16)
C80.026 (2)0.0229 (19)0.0148 (17)0.0037 (16)0.0037 (15)0.0005 (15)
C90.030 (2)0.0195 (19)0.0193 (19)0.0040 (16)0.0005 (16)0.0020 (15)
C100.036 (2)0.0162 (18)0.0184 (19)0.0054 (16)0.0037 (16)0.0006 (15)
C110.0215 (19)0.0195 (18)0.0178 (18)0.0020 (15)0.0018 (15)0.0009 (14)
C120.0227 (19)0.0163 (19)0.0210 (18)0.0006 (15)0.0060 (14)0.0019 (14)
C130.0211 (18)0.0220 (18)0.0188 (17)0.0031 (16)0.0041 (14)0.0055 (16)
C140.026 (2)0.0186 (19)0.0236 (19)0.0014 (16)0.0055 (16)0.0032 (15)
C150.021 (2)0.032 (2)0.029 (2)0.0007 (16)0.0001 (16)0.0096 (17)
C160.032 (2)0.030 (2)0.024 (2)0.0073 (18)0.0055 (17)0.0074 (17)
C170.040 (2)0.023 (2)0.022 (2)0.0049 (18)0.0018 (18)0.0003 (16)
C180.023 (2)0.0210 (19)0.025 (2)0.0013 (16)0.0005 (16)0.0022 (15)
C190.037 (2)0.022 (2)0.026 (2)0.0037 (18)0.0034 (17)0.0001 (16)
Geometric parameters (Å, º) top
Br—C61.906 (3)C9—C101.362 (5)
S—O21.489 (3)C9—H90.9300
S—C11.771 (3)C10—C111.389 (5)
S—C191.796 (4)C10—H100.9300
O1—C111.371 (4)C12—C131.469 (5)
O1—C121.379 (4)C13—C181.398 (5)
C1—C121.360 (5)C13—C141.398 (5)
C1—C21.457 (5)C14—C151.377 (5)
C2—C111.385 (5)C14—H140.9300
C2—C31.434 (5)C15—C161.393 (5)
C3—C41.412 (5)C15—H150.9300
C3—C81.426 (5)C16—C171.385 (5)
C4—C51.373 (5)C16—H160.9300
C4—H40.9300C17—C181.381 (5)
C5—C61.402 (5)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—C71.357 (5)C19—H19A0.9600
C7—C81.420 (5)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—C91.426 (5)
O2—S—C1109.20 (16)C9—C10—H10121.5
O2—S—C19107.03 (17)C11—C10—H10121.5
C1—S—C1997.99 (17)O1—C11—C2111.2 (3)
C11—O1—C12106.3 (3)O1—C11—C10123.2 (3)
C12—C1—C2106.6 (3)C2—C11—C10125.5 (3)
C12—C1—S122.1 (3)C1—C12—O1111.1 (3)
C2—C1—S131.3 (3)C1—C12—C13134.5 (3)
C11—C2—C3118.3 (3)O1—C12—C13114.3 (3)
C11—C2—C1104.9 (3)C18—C13—C14119.2 (3)
C3—C2—C1136.7 (3)C18—C13—C12121.0 (3)
C4—C3—C8118.6 (3)C14—C13—C12119.7 (3)
C4—C3—C2124.8 (3)C15—C14—C13120.4 (3)
C8—C3—C2116.7 (3)C15—C14—H14119.8
C5—C4—C3121.7 (3)C13—C14—H14119.8
C5—C4—H4119.2C14—C15—C16119.9 (4)
C3—C4—H4119.2C14—C15—H15120.0
C4—C5—C6118.7 (3)C16—C15—H15120.0
C4—C5—H5120.7C17—C16—C15120.1 (4)
C6—C5—H5120.7C17—C16—H16120.0
C7—C6—C5122.2 (3)C15—C16—H16120.0
C7—C6—Br119.0 (3)C18—C17—C16120.2 (4)
C5—C6—Br118.8 (3)C18—C17—H17119.9
C6—C7—C8120.1 (3)C16—C17—H17119.9
C6—C7—H7120.0C17—C18—C13120.1 (3)
C8—C7—H7120.0C17—C18—H18119.9
C7—C8—C9119.9 (3)C13—C18—H18119.9
C7—C8—C3118.8 (3)S—C19—H19A109.5
C9—C8—C3121.3 (3)S—C19—H19B109.5
C10—C9—C8121.2 (3)H19A—C19—H19B109.5
C10—C9—H9119.4S—C19—H19C109.5
C8—C9—H9119.4H19A—C19—H19C109.5
C9—C10—C11117.0 (3)H19B—C19—H19C109.5
O2—S—C1—C12137.3 (3)C8—C9—C10—C111.9 (5)
C19—S—C1—C12111.5 (3)C12—O1—C11—C21.0 (4)
O2—S—C1—C239.4 (4)C12—O1—C11—C10175.3 (3)
C19—S—C1—C271.8 (4)C3—C2—C11—O1177.3 (3)
C12—C1—C2—C110.1 (4)C1—C2—C11—O10.6 (4)
S—C1—C2—C11177.1 (3)C3—C2—C11—C101.1 (5)
C12—C1—C2—C3175.8 (4)C1—C2—C11—C10175.6 (3)
S—C1—C2—C37.1 (6)C9—C10—C11—O1174.5 (3)
C11—C2—C3—C4177.2 (3)C9—C10—C11—C21.3 (5)
C1—C2—C3—C47.4 (7)C2—C1—C12—O10.7 (4)
C11—C2—C3—C82.7 (5)S—C1—C12—O1176.8 (2)
C1—C2—C3—C8172.7 (4)C2—C1—C12—C13174.3 (4)
C8—C3—C4—C51.0 (5)S—C1—C12—C138.3 (6)
C2—C3—C4—C5179.1 (3)C11—O1—C12—C11.0 (4)
C3—C4—C5—C60.2 (6)C11—O1—C12—C13175.0 (3)
C4—C5—C6—C70.0 (6)C1—C12—C13—C1837.7 (6)
C4—C5—C6—Br178.5 (3)O1—C12—C13—C18137.1 (3)
C5—C6—C7—C80.5 (5)C1—C12—C13—C14145.2 (4)
Br—C6—C7—C8178.0 (3)O1—C12—C13—C1440.0 (4)
C6—C7—C8—C9178.0 (3)C18—C13—C14—C152.0 (5)
C6—C7—C8—C31.3 (5)C12—C13—C14—C15179.2 (3)
C4—C3—C8—C71.5 (5)C13—C14—C15—C160.2 (5)
C2—C3—C8—C7178.6 (3)C14—C15—C16—C171.7 (6)
C4—C3—C8—C9177.8 (3)C15—C16—C17—C181.0 (6)
C2—C3—C8—C92.1 (5)C16—C17—C18—C131.2 (6)
C7—C8—C9—C10179.0 (3)C14—C13—C18—C172.7 (5)
C3—C8—C9—C100.3 (5)C12—C13—C18—C17179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.703.377 (4)131
C19—H19B···Cg2ii0.962.993.497 (4)114
C18—H18···O2iii0.932.543.283 (4)137
C16—H16···Briv0.932.973.823 (4)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+3/2, z1/2; (iv) x2, y, z1.

Experimental details

Crystal data
Chemical formulaC19H13BrO2S
Mr385.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)6.0007 (4), 22.699 (2), 11.2151 (8)
β (°) 91.267 (1)
V3)1527.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.538, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
13412, 3476, 2280
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.09
No. of reflections3476
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.703.377 (4)130.8
C19—H19B···Cg2ii0.962.993.497 (4)114.2
C18—H18···O2iii0.932.543.283 (4)137.4
C16—H16···Briv0.932.973.823 (4)153.2
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+3/2, z1/2; (iv) x2, y, z1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819–8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds