organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Di-4-pyridyl-2,2′-(5-tert-butyl-m-phenyl­ene)bis­­(1,3,4-oxa­diazole)

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 1 April 2009; accepted 10 July 2009; online 15 July 2009)

The title compound, C24H20N6O2, is a novel 1,3,4-oxadiazole derivative which has potential as an electron-transporting material in organic electroluminescent (EL) devices. In the crystal, the mol­ecular framework is almost planar with an r.m.s. deviation of 0.091 (4) Å and it exists in an E form. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds are observed between the benzene and 1,3,4-oxadiazole rings. The tert-butyl group is disordered over two sites, with occupancy factors of 0.78 (1) and 0.22 (1) for the major and minor orientations, respectively. In the crystal structure, mol­ecules aggregate via C—H⋯N inter­actions, forming mol­ecular tapes along the b axis, which aggregate to form a mol­ecular sheet via C—H⋯N inter­actions.

Related literature

The application of 1,3,4-oxadiazole derivatives as electron-transporting materials in EL devices has been reported by Hughes & Bryce (2005[Hughes, G. & Bryce, M. R. (2005). J. Mater. Chem. 15, 94-107.]). For related structures, including the 1,3,4-oxadiazole system, see: Ono et al.(2005[Ono, K., Ezaka, S., Higashibata, A., Hosokawa, R., Ohkita, M., Saito, K., Suto, M., Tomura, M., Matsushita, Y., Naka, S., Okada, H. & Onnagawa, H. (2005). Macromol. Chem. Phys. 206, 1576-1582.], 2008[Ono, K., Ito, H., Nakashima, A., Uemoto, M., Tomura, M. & Saito, K. (2008). Tetrahedron Lett. 49, 5816-5819.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N6O2

  • Mr = 424.46

  • Monoclinic, P 21 /c

  • a = 5.8778 (10) Å

  • b = 14.767 (3) Å

  • c = 25.298 (6) Å

  • β = 90.635 (10)°

  • V = 2195.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.13 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: none

  • 16667 measured reflections

  • 4956 independent reflections

  • 1548 reflections with I > 2σ(I)

  • Rint = 0.112

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.172

  • S = 0.90

  • 4956 reflections

  • 323 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.54 2.860 (4) 101
C6—H6⋯N4 0.93 2.61 2.928 (5) 100
C11—H11⋯N2i 0.93 2.50 3.406 (6) 164
C17—H17⋯N5ii 0.93 2.56 3.430 (5) 156
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x-2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Oxadiazole derivatives are highly attractive compounds in the research and development of materials for organic electroluminescent (EL) devices since these compounds possess high electron-accepting properties and exhibit strong fluorescence with high quantum yields. Up to now, various electron-transporting materials with 1,3,4-oxadiazole system have been synthesized and investigated for application in EL devices (Hughes & Bryce, 2005). The research of crystal structures is important for the design of electron-transporting materials (Ono et al. 2005; Ono et al. 2008), because these properties depend on their molecular arrangements in the solid state. Thus, we synthesized the title compound (I) as a novel 1,3,4-oxadiazole derivative and investigated its molecular and crystal structure.

The molecular structure of (I) is shown in Fig. 1. The molecular framework is almost planar with an r.m.s. deviation of 0.091 (4) Å and exists in an E–form. Intramolecular C—H···O [2.860 (4) Å for C···O] and C—H···N [2.928 (5) Å for C···N] hydrogen bonds are observed between the benzene and 1,3,4-oxadiazole rings. The tert-butyl group is disordered over two sites with occupancy factors of 0.78 (1) and 0.22 (1) for the major and minor orientations, respectively. The molecular structure is characterized by molecular tapes along the b axis formed by C—H···N interactions [3.406 (6) Å for C···N], as shown in Fig. 2. The molecular tapes form stacks, where the distance between the molecular planes is 3.30 Å. The molecular tapes also aggregate to form a molecular sheet via C—H···N interactions [3.430 (5) Å for C···N] (Fig. 3). The title compound with the sheet-type network and stacking arrangement has potential as an electron-transporting material in EL devices.

Related literature top

The application of 1,3,4-oxadiazole derivatives as electron-transporting materials in EL devices has been reported by Hughes & Bryce (2005). For related structures, including the 1,3,4-oxadiazole system, see: Ono et al.(2005, 2008).

Experimental top

The synthesis of the title compound (I) consists of two reaction steps as follows: A mixture of 5-tert-butylisophthalic dihydrazide (2.50 g, 10.0 mmol) and isonicotinoyl chloride hydrochloride (3.92 g, 22.0 mmol) in dry pyridine (200 ml) was stirred for 40 min at 0 °C under nitrogen. Then, the reaction mixture was refluxed for 5 h. After removal of the solvent, cold water was added. The white precipitate was filtered and washed with cold water and ether to afford compound (II) (3.53 g, 77%) as a white solid, which was used for the following reaction. A mixture of compound (II) (0.40 g, 0.87 mmol) and polyphosphoric acid (PPA) (40 g) was stirred at 180 °C for 2 h. After cooling, the reaction mixture was poured into water. The aqueous solution was basified to pH 9 with an aqueous NaOH solution, and dichloromethane was added. The organic layer was separated and the aqueous layer was extracted twice with dichloromethane. The combined organic solution was dried over Na2SO4 and concentrated. The residue was separated by column chromatography on alumina gel to afford the title compound (0.26 g, 71%) as a white powder. Colorless crystals of the compound, suitable for X-ray analysis were grown from a solution of CHCl3 and hexane.

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(C) (methyl), and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006)r; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. The disordered atoms (C25–C27) of the tert-butyl group are omitted for clarity.
[Figure 2] Fig. 2. Partial diagram of (I), showing a molecular tape along the b axis.
[Figure 3] Fig. 3. The packing diagram of (I), showing a molecular sheet.
5,5'-Di-4-pyridyl-2,2'-(5-tert-butyl-m- phenylene)bis(1,3,4-oxadiazole) top
Crystal data top
C24H20N6O2F(000) = 888
Mr = 424.46Dx = 1.284 Mg m3
Monoclinic, P21/cMelting point: 529 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 5.8778 (10) ÅCell parameters from 1816 reflections
b = 14.767 (3) Åθ = 3.2–27.5°
c = 25.298 (6) ŵ = 0.09 mm1
β = 90.635 (10)°T = 296 K
V = 2195.7 (8) Å3Prism, yellow
Z = 40.25 × 0.13 × 0.10 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1548 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.112
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 14.62 pixels mm-1h = 57
ϕ and ω scansk = 1914
16667 measured reflectionsl = 3222
4956 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0474P)2]
where P = (Fo2 + 2Fc2)/3
4956 reflections(Δ/σ)max = 0.004
323 parametersΔρmax = 0.23 e Å3
16 restraintsΔρmin = 0.13 e Å3
Crystal data top
C24H20N6O2V = 2195.7 (8) Å3
Mr = 424.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8778 (10) ŵ = 0.09 mm1
b = 14.767 (3) ÅT = 296 K
c = 25.298 (6) Å0.25 × 0.13 × 0.10 mm
β = 90.635 (10)°
Data collection top
Rigaku Mercury CCD
diffractometer
1548 reflections with I > 2σ(I)
16667 measured reflectionsRint = 0.112
4956 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07016 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 0.90Δρmax = 0.23 e Å3
4956 reflectionsΔρmin = 0.13 e Å3
323 parameters
Special details top

Experimental. 1H NMR (DMSO-d6, δ p.p.m.): 1.46 (s, 9H), 8.15 (d, J = 5.5 Hz, 4H), 8.36 (s, 2H), 8.61 (s, 1H), 8.88 (d, J = 5.5 Hz, 4H); MS (EI): m/z 424 (M+), 409.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Three methyl groups of the tert-butyl group are disordered over two sites (C22–C24 and C25–C27) with occupancies of 0.78 (1):0.22 (1). The values were determined by refining site occupancies.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3004 (4)0.22049 (16)0.28302 (10)0.0597 (7)
O20.4436 (4)0.45678 (17)0.41002 (9)0.0615 (8)
N10.4194 (5)0.3569 (2)0.26015 (14)0.0762 (11)
N20.2304 (5)0.3662 (2)0.29375 (13)0.0731 (11)
N30.9831 (6)0.1428 (3)0.17039 (15)0.0904 (12)
N40.6818 (5)0.3527 (2)0.43895 (13)0.0726 (10)
N50.7648 (5)0.4388 (2)0.45273 (14)0.0734 (11)
N60.6473 (7)0.7838 (2)0.45477 (15)0.0903 (12)
C10.2506 (6)0.1407 (3)0.37961 (15)0.0586 (11)
C20.0691 (6)0.1670 (2)0.34870 (15)0.0587 (11)
H20.02400.12280.33420.070*
C30.0221 (6)0.2581 (2)0.33868 (15)0.0541 (10)
C40.1606 (6)0.3249 (3)0.36019 (14)0.0584 (11)
H40.13000.38580.35400.070*
C50.3437 (6)0.3001 (2)0.39072 (14)0.0537 (11)
C60.3841 (6)0.2088 (3)0.40024 (15)0.0620 (11)
H60.50620.19290.42140.074*
C70.1671 (6)0.2853 (3)0.30558 (15)0.0588 (11)
C80.4546 (7)0.2716 (3)0.25547 (16)0.0592 (11)
C90.6312 (6)0.2249 (3)0.22503 (15)0.0587 (11)
C100.6450 (7)0.1324 (3)0.22164 (16)0.0752 (13)
H100.53670.09570.23750.090*
C110.8243 (8)0.0949 (3)0.19406 (18)0.0893 (16)
H110.83340.03210.19210.107*
C120.9652 (7)0.2322 (4)0.17330 (18)0.0845 (15)
H121.07370.26720.15630.101*
C130.7938 (7)0.2763 (3)0.20023 (15)0.0716 (13)
H130.78870.33920.20150.086*
C140.4945 (7)0.3669 (3)0.41435 (15)0.0587 (11)
C150.6198 (6)0.4971 (3)0.43581 (14)0.0571 (11)
C160.6269 (6)0.5958 (3)0.44115 (14)0.0577 (11)
C170.8051 (6)0.6360 (3)0.46777 (15)0.0709 (13)
H170.92100.60090.48190.085*
C180.8076 (7)0.7293 (3)0.47298 (17)0.0782 (14)
H180.92970.75540.49040.094*
C190.4754 (8)0.7431 (3)0.42957 (19)0.0953 (16)
H190.36010.77960.41640.114*
C200.4581 (7)0.6506 (3)0.42176 (16)0.0746 (13)
H200.33520.62610.40380.090*
C210.2996 (7)0.0404 (3)0.3923 (2)0.0689 (12)
C220.2044 (17)0.0225 (5)0.4471 (3)0.104 (3)0.781 (13)
H22A0.28420.05880.47240.156*0.781 (13)
H22B0.04570.03770.44820.156*0.781 (13)
H22C0.22310.04040.45570.156*0.781 (13)
C230.5473 (10)0.0201 (4)0.3857 (5)0.138 (6)0.781 (13)
H23A0.57370.04290.39250.207*0.781 (13)
H23B0.59460.03420.35020.207*0.781 (13)
H23C0.63290.05610.41000.207*0.781 (13)
C240.1655 (15)0.0238 (4)0.3541 (3)0.092 (3)0.781 (13)
H24A0.21100.08540.36000.139*0.781 (13)
H24B0.00510.01790.36090.139*0.781 (13)
H24C0.19840.00740.31810.139*0.781 (13)
C250.393 (5)0.0078 (13)0.3436 (7)0.080 (11)0.219 (13)
H25A0.52980.03980.35260.121*0.219 (13)
H25B0.28240.05000.33090.121*0.219 (13)
H25C0.42700.03580.31650.121*0.219 (13)
C260.116 (6)0.0169 (19)0.419 (2)0.20 (3)0.219 (13)
H26A0.17860.04670.44920.303*0.219 (13)
H26B0.00770.02120.42980.303*0.219 (13)
H26C0.06240.06140.39430.303*0.219 (13)
C270.483 (5)0.0375 (17)0.4371 (11)0.125 (15)0.219 (13)
H27A0.61500.07140.42610.187*0.219 (13)
H27B0.42110.06360.46890.187*0.219 (13)
H27C0.52610.02420.44370.187*0.219 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0732 (17)0.0460 (16)0.0602 (18)0.0062 (14)0.0133 (14)0.0036 (14)
O20.0596 (17)0.0577 (18)0.0676 (19)0.0027 (14)0.0171 (14)0.0041 (15)
N10.086 (3)0.051 (2)0.092 (3)0.002 (2)0.025 (2)0.013 (2)
N20.077 (2)0.051 (2)0.092 (3)0.0021 (19)0.030 (2)0.010 (2)
N30.099 (3)0.086 (3)0.087 (3)0.008 (3)0.022 (2)0.001 (3)
N40.069 (2)0.064 (2)0.085 (3)0.0093 (19)0.021 (2)0.009 (2)
N50.066 (2)0.066 (2)0.089 (3)0.008 (2)0.027 (2)0.006 (2)
N60.119 (3)0.067 (3)0.086 (3)0.000 (2)0.030 (2)0.004 (2)
C10.061 (3)0.052 (3)0.063 (3)0.004 (2)0.001 (2)0.000 (2)
C20.062 (3)0.048 (3)0.065 (3)0.0057 (19)0.000 (2)0.007 (2)
C30.059 (3)0.045 (2)0.058 (3)0.003 (2)0.005 (2)0.001 (2)
C40.066 (3)0.052 (3)0.057 (3)0.006 (2)0.001 (2)0.002 (2)
C50.062 (3)0.047 (3)0.052 (3)0.004 (2)0.006 (2)0.005 (2)
C60.060 (3)0.068 (3)0.059 (3)0.014 (2)0.007 (2)0.005 (2)
C70.066 (3)0.050 (3)0.060 (3)0.002 (2)0.009 (2)0.007 (2)
C80.069 (3)0.054 (3)0.055 (3)0.006 (2)0.011 (2)0.019 (2)
C90.073 (3)0.058 (3)0.046 (3)0.002 (2)0.009 (2)0.005 (2)
C100.099 (3)0.059 (3)0.068 (3)0.002 (3)0.023 (3)0.001 (3)
C110.116 (4)0.066 (3)0.086 (4)0.015 (3)0.026 (3)0.001 (3)
C120.087 (4)0.081 (4)0.086 (4)0.002 (3)0.026 (3)0.009 (3)
C130.086 (3)0.054 (3)0.075 (3)0.001 (2)0.015 (3)0.009 (2)
C140.065 (3)0.050 (3)0.062 (3)0.008 (2)0.006 (2)0.003 (2)
C150.053 (3)0.063 (3)0.056 (3)0.002 (2)0.014 (2)0.006 (2)
C160.063 (3)0.065 (3)0.045 (3)0.001 (2)0.011 (2)0.002 (2)
C170.069 (3)0.072 (3)0.073 (3)0.004 (2)0.019 (2)0.007 (3)
C180.086 (3)0.068 (3)0.081 (3)0.013 (3)0.019 (3)0.007 (3)
C190.116 (4)0.070 (4)0.101 (4)0.008 (3)0.040 (3)0.005 (3)
C200.078 (3)0.068 (3)0.079 (3)0.002 (3)0.028 (2)0.001 (3)
C210.077 (3)0.045 (3)0.086 (4)0.002 (2)0.011 (3)0.010 (3)
C220.154 (9)0.051 (5)0.107 (7)0.007 (5)0.004 (6)0.027 (5)
C230.056 (4)0.052 (5)0.305 (19)0.018 (3)0.024 (7)0.032 (8)
C240.123 (8)0.046 (4)0.108 (6)0.020 (4)0.003 (6)0.009 (4)
C250.13 (3)0.044 (13)0.065 (16)0.022 (16)0.008 (16)0.002 (11)
C260.22 (4)0.06 (2)0.32 (8)0.04 (2)0.17 (5)0.01 (3)
C270.21 (4)0.09 (2)0.07 (2)0.05 (2)0.02 (2)0.013 (17)
Geometric parameters (Å, º) top
O1—C71.366 (4)C13—H130.9300
O1—C81.375 (4)C15—C161.465 (5)
O2—C151.367 (4)C16—C171.385 (4)
O2—C141.365 (4)C16—C201.375 (5)
N1—C81.282 (4)C17—C181.384 (5)
N1—N21.413 (4)C17—H170.9300
N2—C71.287 (4)C18—H180.9300
N3—C111.320 (5)C19—C201.384 (5)
N3—C121.326 (5)C19—H190.9300
N4—C141.288 (4)C20—H200.9300
N4—N51.407 (4)C21—C221.513 (7)
N5—C151.288 (4)C21—C231.494 (6)
N6—C181.326 (4)C21—C241.573 (6)
N6—C191.343 (5)C21—C251.523 (13)
C1—C21.385 (5)C21—C261.521 (14)
C1—C61.382 (5)C21—C271.575 (11)
C1—C211.542 (5)C22—H22A0.9600
C2—C31.396 (4)C22—H22B0.9600
C2—H20.9300C22—H22C0.9600
C3—C41.394 (4)C23—H23A0.9600
C3—C71.456 (5)C23—H23B0.9600
C4—C51.381 (4)C23—H23C0.9600
C4—H40.9300C24—H24A0.9600
C5—C61.390 (4)C24—H24B0.9600
C5—C141.458 (4)C24—H24C0.9600
C6—H60.9300C25—H25A0.9600
C8—C91.471 (5)C25—H25B0.9600
C9—C131.377 (4)C25—H25C0.9600
C9—C101.371 (5)C26—H26A0.9600
C10—C111.386 (5)C26—H26B0.9600
C10—H100.9300C26—H26C0.9600
C11—H110.9300C27—H27A0.9600
C12—C131.384 (5)C27—H27B0.9600
C12—H120.9300C27—H27C0.9600
C7—O1—C8102.2 (3)N5—C15—C16128.0 (4)
C15—O2—C14102.5 (3)O2—C15—C16120.0 (3)
C8—N1—N2106.3 (3)C17—C16—C20118.3 (4)
C7—N2—N1106.3 (3)C17—C16—C15119.6 (4)
C11—N3—C12116.8 (4)C20—C16—C15122.1 (4)
C14—N4—N5105.9 (3)C16—C17—C18118.8 (4)
C15—N5—N4106.8 (3)C16—C17—H17120.6
C18—N6—C19115.7 (4)C18—C17—H17120.6
C2—C1—C6116.9 (4)N6—C18—C17124.3 (4)
C2—C1—C21122.3 (4)N6—C18—H18117.9
C6—C1—C21120.8 (3)C17—C18—H18117.9
C1—C2—C3121.9 (3)N6—C19—C20124.5 (4)
C1—C2—H2119.0N6—C19—H19117.7
C3—C2—H2119.0C20—C19—H19117.7
C4—C3—C2119.5 (3)C16—C20—C19118.4 (4)
C4—C3—C7118.8 (3)C16—C20—H20120.8
C2—C3—C7121.7 (3)C19—C20—H20120.8
C5—C4—C3119.5 (4)C23—C21—C22114.7 (6)
C5—C4—H4120.2C23—C21—C1110.7 (4)
C3—C4—H4120.2C22—C21—C1106.9 (4)
C4—C5—C6119.3 (3)C23—C21—C24107.7 (6)
C4—C5—C14122.0 (4)C22—C21—C24106.0 (5)
C6—C5—C14118.6 (3)C1—C21—C24110.8 (4)
C5—C6—C1122.8 (3)C21—C22—H22A109.4
C5—C6—H6118.6C21—C22—H22B109.5
C1—C6—H6118.6C21—C22—H22C109.5
N2—C7—O1112.6 (3)C21—C23—H23A109.5
N2—C7—C3127.9 (4)C21—C23—H23B109.4
O1—C7—C3119.4 (3)C21—C23—H23C109.5
N1—C8—O1112.6 (3)C21—C24—H24A109.5
N1—C8—C9128.7 (3)C21—C24—H24B109.5
O1—C8—C9118.7 (3)C21—C24—H24C109.5
C13—C9—C10118.6 (4)C21—C25—H25A109.6
C13—C9—C8118.5 (4)C21—C25—H25B109.4
C10—C9—C8122.9 (4)H25A—C25—H25B109.5
C9—C10—C11118.4 (4)C21—C25—H25C109.5
C9—C10—H10120.8H25A—C25—H25C109.5
C11—C10—H10120.8H25B—C25—H25C109.5
N3—C11—C10124.0 (4)C21—C26—H26A109.3
N3—C11—H11118.0C21—C26—H26B109.5
C10—C11—H11118.0H26A—C26—H26B109.5
N3—C12—C13123.6 (4)C21—C26—H26C109.6
N3—C12—H12118.2H26A—C26—H26C109.5
C13—C12—H12118.2H26B—C26—H26C109.5
C9—C13—C12118.5 (4)C21—C27—H27A109.4
C9—C13—H13120.7C21—C27—H27B109.6
C12—C13—H13120.7H27A—C27—H27B109.5
N4—C14—O2112.7 (3)C21—C27—H27C109.5
N4—C14—C5127.9 (4)H27A—C27—H27C109.5
O2—C14—C5119.3 (3)H27B—C27—H27C109.5
N5—C15—O2112.0 (4)
C8—N1—N2—C70.9 (5)C11—N3—C12—C131.2 (8)
C14—N4—N5—C150.7 (4)C10—C9—C13—C120.5 (6)
C6—C1—C2—C30.0 (6)C8—C9—C13—C12177.5 (4)
C21—C1—C2—C3178.1 (4)N3—C12—C13—C90.7 (7)
C1—C2—C3—C40.0 (6)N5—N4—C14—O20.3 (5)
C1—C2—C3—C7179.2 (4)N5—N4—C14—C5178.5 (4)
C2—C3—C4—C50.6 (6)C15—O2—C14—N41.1 (4)
C7—C3—C4—C5178.6 (4)C15—O2—C14—C5179.4 (3)
C3—C4—C5—C61.2 (6)C4—C5—C14—N4172.5 (4)
C3—C4—C5—C14179.9 (4)C6—C5—C14—N48.7 (6)
C4—C5—C6—C11.2 (6)C4—C5—C14—O25.5 (6)
C14—C5—C6—C1180.0 (4)C6—C5—C14—O2173.2 (3)
C2—C1—C6—C50.6 (6)N4—N5—C15—O21.4 (5)
C21—C1—C6—C5178.7 (4)N4—N5—C15—C16178.9 (4)
N1—N2—C7—O10.7 (5)C14—O2—C15—N51.5 (4)
N1—N2—C7—C3179.2 (4)C14—O2—C15—C16178.7 (4)
C8—O1—C7—N20.2 (4)N5—C15—C16—C170.9 (7)
C8—O1—C7—C3179.7 (4)O2—C15—C16—C17179.4 (3)
C4—C3—C7—N21.7 (7)N5—C15—C16—C20179.0 (4)
C2—C3—C7—N2179.1 (4)O2—C15—C16—C201.3 (6)
C4—C3—C7—O1178.2 (3)C20—C16—C17—C181.0 (6)
C2—C3—C7—O11.0 (6)C15—C16—C17—C18179.2 (4)
N2—N1—C8—O10.9 (5)C19—N6—C18—C170.5 (7)
N2—N1—C8—C9179.8 (4)C16—C17—C18—N61.1 (7)
C7—O1—C8—N10.5 (5)C18—N6—C19—C200.2 (8)
C7—O1—C8—C9179.9 (3)C17—C16—C20—C190.4 (6)
N1—C8—C9—C134.7 (7)C15—C16—C20—C19178.5 (4)
O1—C8—C9—C13176.0 (4)N6—C19—C20—C160.3 (8)
N1—C8—C9—C10177.4 (5)C2—C1—C21—C23135.0 (7)
O1—C8—C9—C101.9 (6)C6—C1—C21—C2347.0 (8)
C13—C9—C10—C111.0 (7)C2—C1—C21—C2299.4 (6)
C8—C9—C10—C11176.9 (4)C6—C1—C21—C2278.6 (6)
C12—N3—C11—C100.7 (7)C2—C1—C21—C2415.6 (7)
C9—C10—C11—N30.4 (7)C6—C1—C21—C24166.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.542.860 (4)101
C6—H6···N40.932.612.928 (5)100
C11—H11···N2i0.932.503.406 (6)164
C17—H17···N5ii0.932.563.430 (5)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H20N6O2
Mr424.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.8778 (10), 14.767 (3), 25.298 (6)
β (°) 90.635 (10)
V3)2195.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.13 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16667, 4956, 1548
Rint0.112
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.172, 0.90
No. of reflections4956
No. of parameters323
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.13

Computer programs: , CrystalClear (Rigaku/MSC, 2006)r, TEXSAN (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.542.860 (4)100.7
C6—H6···N40.932.612.928 (5)100.3
C11—H11···N2i0.932.503.406 (6)163.5
C17—H17···N5ii0.932.563.430 (5)155.8
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x2, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationHughes, G. & Bryce, M. R. (2005). J. Mater. Chem. 15, 94–107.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOno, K., Ezaka, S., Higashibata, A., Hosokawa, R., Ohkita, M., Saito, K., Suto, M., Tomura, M., Matsushita, Y., Naka, S., Okada, H. & Onnagawa, H. (2005). Macromol. Chem. Phys. 206, 1576–1582.  Web of Science CSD CrossRef CAS Google Scholar
First citationOno, K., Ito, H., Nakashima, A., Uemoto, M., Tomura, M. & Saito, K. (2008). Tetrahedron Lett. 49, 5816–5819.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds