organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-eth­oxy­carbonyl-4-methyl­thia­zol-3-ium chloride monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 17 June 2009; accepted 26 June 2009; online 4 July 2009)

In the crystal structure of the title compound, C7H11N2O2S+·Cl·H2O, the cations, anions and water mol­ecules are linked by inter­molecular N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds, forming layers stacked along [20[\overline{1}]].

Related literature

For the biological activity of thia­zole derivatives, see: Turan-Zitouni et al. (2003[Turan-Zitouni, G., Demirayak, E., Ozdemir, A., Kaplancikli, Z. A. & Yildiz, M. T. (2003). Eur. J. Med. Chem. 39, 267-272.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2O2S+·Cl·H2O

  • Mr = 240.70

  • Monoclinic, P 21 /c

  • a = 10.637 (2) Å

  • b = 7.4463 (15) Å

  • c = 15.082 (3) Å

  • β = 110.22 (3)°

  • V = 1121.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 292 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.821, Tmax = 0.868

  • 11232 measured reflections

  • 2564 independent reflections

  • 2097 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.12

  • 2564 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.86 1.94 2.789 (3) 169
N1—H1B⋯Cl1ii 0.86 2.30 3.135 (2) 164
O1W—H1C⋯Cl1 0.93 2.25 3.118 (2) 156
O1W—H1D⋯O1iii 0.83 2.05 2.863 (3) 167
N2—H2⋯Cl1i 0.79 (3) 2.35 (3) 3.141 (2) 173 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Heterocyclic compounds containing the thiazole ring have recently received much attention for their broad-spectrum biological activities (Turan-Zitouni et al., 2003). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains 5-(ethoxycarbonyl)-4-methylthiazol-2-aminium cations, chloride anions and water molecules in the stoichiometric ratio of 1:1:1. The cation is approximately planar, the maximum displacement being 0.062 (2) Å for atom O1. Bond lengths (Allen et al., 1987) and angles have normal values. In the crystal structure (Fig. 2), cations, anions and water molecules are linked by intermolecular N—H···O, N—H···Cl, O—H···O and O—H···Cl hydrogen bonds (Table 1) to form layers stacked along [2 0 1].

Related literature top

For the biological activity of thiazole derivatives, see: Turan-Zitouni et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of thiourea (0.2 mol), ethyl acetoacetate (0.1 mol) and I2 (0.1 mol) was stirred for 15 hours at 120°C. After refluxing the mixture with chlorhydric acid, the title compound was obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution at room temperature.

Refinement top

The H2 hydrogen atom was located in a difference Fourier map and refined freely. The water H atoms were also located in a difference Fourier map but not refined [Uiso(H) = 1.5Ueq(O)]. All other H atoms were placed geometrically and refined as riding, with C—H = 0.96-0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. Intermolecular H bonds are shown as dashed lined.
2-Amino-5-ethoxycarbonyl-4-methylthiazol-3-ium chloride monohydrate top
Crystal data top
C7H11N2O2S+·Cl·H2OF(000) = 504
Mr = 240.70Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2280 reflections
a = 10.637 (2) Åθ = 2.3–27.4°
b = 7.4463 (15) ŵ = 0.51 mm1
c = 15.082 (3) ÅT = 292 K
β = 110.22 (3)°Block, colourless
V = 1121.0 (4) Å30.40 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2564 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.821, Tmax = 0.868l = 1919
11232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.5076P]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max = 0.012
133 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H11N2O2S+·Cl·H2OV = 1121.0 (4) Å3
Mr = 240.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.637 (2) ŵ = 0.51 mm1
b = 7.4463 (15) ÅT = 292 K
c = 15.082 (3) Å0.40 × 0.32 × 0.28 mm
β = 110.22 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2097 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.868Rint = 0.037
11232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.48 e Å3
2564 reflectionsΔρmin = 0.21 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5427 (2)0.4538 (3)0.14877 (16)0.0386 (5)
C20.3764 (2)0.2578 (3)0.06588 (16)0.0388 (5)
C30.3260 (3)0.0717 (3)0.0413 (2)0.0542 (7)
H3A0.24460.05630.05450.081*
H3B0.39200.01210.07810.081*
H3C0.30880.05080.02470.081*
C40.3170 (2)0.4157 (3)0.03211 (17)0.0411 (5)
C50.1833 (2)0.4419 (3)0.03804 (17)0.0455 (6)
C60.0280 (3)0.6581 (4)0.1270 (2)0.0616 (8)
H6A0.04190.60520.10790.074*
H6B0.01990.61160.18880.074*
C70.0156 (3)0.8556 (5)0.1302 (3)0.0850 (11)
H7A0.02480.90010.06860.128*
H7B0.07060.88890.17420.128*
H7C0.08460.90630.15010.128*
Cl10.33656 (7)0.42792 (8)0.29075 (5)0.0540 (2)
N10.65955 (19)0.5069 (3)0.20741 (15)0.0499 (5)
H1A0.71820.42900.23800.060*
H1B0.67750.61970.21530.060*
N20.5037 (2)0.2825 (2)0.13088 (14)0.0391 (4)
O10.10510 (19)0.3235 (3)0.07219 (16)0.0720 (6)
O20.15910 (17)0.6150 (2)0.05873 (13)0.0544 (5)
O1W0.1705 (2)0.7502 (3)0.17716 (18)0.0799 (7)
H1C0.20760.63730.19370.120*
H1D0.08790.74430.15030.120*
S10.41995 (6)0.59887 (7)0.08238 (4)0.04234 (19)
H20.547 (2)0.198 (3)0.1547 (16)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (11)0.0311 (10)0.0441 (12)0.0043 (8)0.0047 (9)0.0015 (9)
C20.0357 (11)0.0341 (11)0.0414 (11)0.0007 (9)0.0067 (9)0.0003 (9)
C30.0496 (15)0.0364 (12)0.0625 (16)0.0065 (11)0.0014 (12)0.0003 (11)
C40.0343 (11)0.0361 (11)0.0463 (12)0.0002 (9)0.0056 (9)0.0017 (10)
C50.0342 (12)0.0447 (13)0.0498 (13)0.0033 (10)0.0048 (10)0.0023 (11)
C60.0406 (14)0.0564 (16)0.0654 (17)0.0121 (12)0.0103 (12)0.0003 (13)
C70.0572 (19)0.0549 (18)0.110 (3)0.0138 (15)0.0128 (18)0.0051 (18)
Cl10.0531 (4)0.0343 (3)0.0627 (4)0.0034 (2)0.0047 (3)0.0010 (3)
N10.0366 (10)0.0341 (10)0.0610 (13)0.0021 (8)0.0061 (9)0.0015 (9)
N20.0359 (10)0.0284 (9)0.0443 (10)0.0058 (8)0.0028 (8)0.0030 (8)
O10.0430 (11)0.0534 (12)0.0924 (15)0.0044 (9)0.0112 (10)0.0004 (11)
O20.0409 (9)0.0456 (10)0.0582 (10)0.0083 (7)0.0064 (8)0.0013 (8)
O1W0.0451 (11)0.0465 (11)0.1127 (17)0.0019 (9)0.0180 (11)0.0051 (11)
S10.0357 (3)0.0299 (3)0.0515 (3)0.0048 (2)0.0024 (2)0.0036 (2)
Geometric parameters (Å, º) top
C1—N11.313 (3)C6—O21.454 (3)
C1—N21.339 (3)C6—C71.476 (4)
C1—S11.724 (2)C6—H6A0.9700
C2—C41.348 (3)C6—H6B0.9700
C2—N21.382 (3)C7—H7A0.9600
C2—C31.486 (3)C7—H7B0.9600
C3—H3A0.9600C7—H7C0.9600
C3—H3B0.9600N1—H1A0.8600
C3—H3C0.9600N1—H1B0.8600
C4—C51.463 (3)N2—H20.79 (3)
C4—S11.750 (2)O1W—H1C0.9259
C5—O11.199 (3)O1W—H1D0.8324
C5—O21.330 (3)
N1—C1—N2125.3 (2)C7—C6—H6A110.3
N1—C1—S1123.57 (17)O2—C6—H6B110.3
N2—C1—S1111.12 (16)C7—C6—H6B110.3
C4—C2—N2111.61 (19)H6A—C6—H6B108.5
C4—C2—C3129.6 (2)C6—C7—H7A109.5
N2—C2—C3118.8 (2)C6—C7—H7B109.5
C2—C3—H3A109.5H7A—C7—H7B109.5
C2—C3—H3B109.5C6—C7—H7C109.5
H3A—C3—H3B109.5H7A—C7—H7C109.5
C2—C3—H3C109.5H7B—C7—H7C109.5
H3A—C3—H3C109.5C1—N1—H1A120.0
H3B—C3—H3C109.5C1—N1—H1B120.0
C2—C4—C5126.9 (2)H1A—N1—H1B120.0
C2—C4—S1112.00 (17)C1—N2—C2115.39 (18)
C5—C4—S1121.05 (17)C1—N2—H2125.1 (18)
O1—C5—O2124.2 (2)C2—N2—H2119.5 (18)
O1—C5—C4124.7 (2)C5—O2—C6116.1 (2)
O2—C5—C4111.1 (2)H1C—O1W—H1D111.3
O2—C6—C7107.3 (2)C1—S1—C489.88 (11)
O2—C6—H6A110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.861.942.789 (3)169
N1—H1B···Cl1ii0.862.303.135 (2)164
O1W—H1C···Cl10.932.253.118 (2)156
O1W—H1D···O1iii0.832.052.863 (3)167
N2—H2···Cl1i0.79 (3)2.35 (3)3.141 (2)173 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H11N2O2S+·Cl·H2O
Mr240.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)10.637 (2), 7.4463 (15), 15.082 (3)
β (°) 110.22 (3)
V3)1121.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.821, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
11232, 2564, 2097
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.12
No. of reflections2564
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.861.942.789 (3)168.8
N1—H1B···Cl1ii0.862.303.135 (2)163.9
O1W—H1C···Cl10.932.253.118 (2)155.8
O1W—H1D···O1iii0.832.052.863 (3)166.9
N2—H2···Cl1i0.79 (3)2.35 (3)3.141 (2)173 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

Financial support from the Southeast University Fund for Young Researchers (4007041027) is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Demirayak, E., Ozdemir, A., Kaplancikli, Z. A. & Yildiz, M. T. (2003). Eur. J. Med. Chem. 39, 267–272.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds