metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diferrocenyl-2-methyl­piperazine-1,4-diium bis­­(tri­fluoro­acetate)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fangc2009@yahoo.cn

(Received 18 June 2009; accepted 1 July 2009; online 22 July 2009)

In the title compound, [Fe2(C5H5)2(C17H24N2)](CF3COO)2, the cation possesses a crystallographically imposed inversion centre. The methyl group is disordered over two positions of equal occupancy. The Fe—C bond lengths to the two cyclo­penta­diene rings vary from 2.025 (6) to 2.044 (6) Å. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature

For the applications of ferrocene derivatives, see: Yang et al. (2002[Yang, J.-X., Tian, Y.-P., Liu, Q.-L., Xie, Y.-S., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2002). Acta Cryst. C58, m43-m44.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). In Ferrocenes. Weinheim: VCH.]); Long (1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.]); Roberto et al. (2000[Roberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775-1788.]). For the crystal structure of related compounds, see: Hess et al. (1999[Hess, A., Brosch, O., Weyhermüller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75-84.]); Base et al. (2002[Base, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun. 5, 46-50.]); For the synthetic strategy, see: Chen (2009[Chen, F. (2009). Acta Cryst. E65, m788.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(C17H24N2)](C2F3O2)2

  • Mr = 724.30

  • Monoclinic, P 21 /n

  • a = 11.922 (3) Å

  • b = 9.7977 (16) Å

  • c = 13.628 (4) Å

  • β = 99.998 (15)°

  • V = 1567.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.771, Tmax = 0.819

  • 15611 measured reflections

  • 3592 independent reflections

  • 3117 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.224

  • S = 1.07

  • 3592 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.91 1.80 2.696 (6) 169
C4—H4⋯O2ii 0.98 2.35 3.306 (9) 163
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis (Yang et al., 2002), non-linear optical (NLO) materials (Long, 1995; Roberto et al., 2000), organic or organometallic synthesis and materials (Togni & Hayashi, 1995), and so on. As part of our on-going studies on new ferrocene compounds, the crystal structure of the title compound is reported herein.

The title compound (Fig. 1) consists of centrosymmetric 1,4-ferrocenyl-2-methylpiperazinium cations and trifluoroacetate anions in the stroichiometric ratio of 1:2. The methyl group of the cation is disordered over two positions of equal occupancy related by the symmetry operator (-x, 1-y, 1-z). The deformation of the 1,4-ferrocenyl-2-methylpiperazinium cation is reflected in the values of the C12A—C13—N1, C13—N1—C12, N1—C12—C13A angles, which are 109.8 (4), 110.0 (3), 111.9 (4)°, respectively [symmetry code: (A) -x, 1-y, 1-z]. The Fe—C distances to the two cyclopentadiene rings are normal, ranging from 2.025 (6) to 2.044 (6) Å (Hess et al., 1999; Base et al., 2002). The two cyclopentadiene rings are nearly parallel, forming a dihedral angle of 1.1 (2)°. In the crystal packing (Fig. 2), intermolecular N—H···O and C—H···O interactions (Table 1) link cations and anions into a hydrogen-bonded network, which stabilizes the crystal packing (Fig.2).

Related literature top

For the applications of ferrocene derivatives, see: Yang et al. (2002); Togni & Hayashi (1995); Long (1995); Roberto et al. (2000). For the crystal structure of related compounds, see: Hess et al. (1999); Base et al. (2002); For the synthetic strategy, see: Chen (2009).

Experimental top

The preparation of S-1,4-ferrocenyl-2-methylpiperazine is analogous to that of 2,2'-diferrocenyl-5,5'-(m-phenylene)di-2H-tetrazole (Chen, 2009). To a mixture of [Fe(C5H5)(C5H4)N+(CH3)3I-] (10 mmol) in H2O (50 ml) was added S-2-methylpiperazine (5 mmol) and the mixture was heated to reflux temperature for 5 h. Then, the formed precipitate was filtered, the obtained yellow solid was purified enough without further disposal (yield: 78%). For the preparation of the title compound, a solution of trifluoroacetic acid (4 mmol) in ethanol was added to a solution of S-1,4-ferrocenyl-2-methylpiperazine (2 mmol) in dichloromethane/ethanol (1:1 v/v) and the mixture stirred for 1 h at room temperature. Red crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature after 5 days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the parent atoms, with C—H = 0.96-0.98 Å, N—H = 0.91 Å and with Uiso(H) = 1.2Uiso(C, N) or 1.2Uiso(C) for methyl H atoms. The methyl group is disordered over two positions related by a centre of symmetry, with site occupancy factors of 0.5.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operator (-x, 1-y, 1-z). Only one component of the disordered methyl group is shown.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines. Only one component of the disordered methyl group is shown.
1,4-Diferrocenyl-2-methylpiperazine-1,4-diium bis(trifluoroacetate) top
Crystal data top
[Fe2(C5H5)2(C17H24N2)](C2F3O2)2F(000) = 744.0
Mr = 724.30Dx = 1.534 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3933 reflections
a = 11.922 (3) Åθ = 2.6–27.5°
b = 9.7977 (16) ŵ = 1.00 mm1
c = 13.628 (4) ÅT = 293 K
β = 99.998 (15)°Block, red
V = 1567.7 (7) Å30.27 × 0.25 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube3117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.771, Tmax = 0.819l = 1717
15611 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1088P)2 + 3.5578P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Fe2(C5H5)2(C17H24N2)](C2F3O2)2V = 1567.7 (7) Å3
Mr = 724.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.922 (3) ŵ = 1.00 mm1
b = 9.7977 (16) ÅT = 293 K
c = 13.628 (4) Å0.27 × 0.25 × 0.20 mm
β = 99.998 (15)°
Data collection top
Rigaku SCXmini
diffractometer
3592 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3117 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.819Rint = 0.042
15611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.07Δρmax = 1.06 e Å3
3592 reflectionsΔρmin = 0.71 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.07028 (5)0.09197 (7)0.20528 (5)0.0426 (3)
N10.0206 (3)0.3711 (4)0.4525 (3)0.0398 (8)
H1A0.04080.32340.46510.048*
C10.0197 (4)0.2288 (5)0.3010 (3)0.0451 (10)
C130.0910 (4)0.4133 (5)0.5509 (4)0.0488 (11)
H13A0.15870.46110.53940.059*
H13B0.11470.33290.59070.059*0.50
C70.2223 (5)0.0916 (6)0.1564 (5)0.0591 (13)
H70.25940.17180.13330.071*
C120.0211 (4)0.4941 (5)0.3933 (3)0.0449 (10)
H12A0.06750.46570.33100.054*
H12B0.04350.54470.37770.054*
C110.0902 (4)0.2780 (5)0.3958 (3)0.0469 (10)
H11A0.15560.32760.38090.056*
H11B0.11780.20040.43720.056*
C80.1457 (5)0.0064 (6)0.0967 (4)0.0614 (14)
H80.12010.01600.02470.074*
C50.0521 (5)0.1107 (6)0.2920 (4)0.0583 (14)
H50.06410.04950.34620.070*
C20.0127 (5)0.2876 (6)0.2044 (4)0.0569 (13)
H20.05270.36940.18760.068*
C60.2371 (5)0.0449 (7)0.2551 (5)0.0642 (15)
H60.28640.08640.31230.077*
C90.1104 (6)0.0962 (6)0.1582 (6)0.0747 (19)
H90.05720.17100.13670.090*
C30.0642 (5)0.2062 (7)0.1373 (5)0.0707 (18)
H30.08510.22150.06540.085*
C40.1032 (5)0.0992 (7)0.1902 (6)0.075 (2)
H40.15600.02720.16160.090*
C100.1680 (6)0.0701 (7)0.2578 (5)0.0748 (19)
H100.16120.12400.31700.090*
O10.8567 (4)0.2055 (6)0.4984 (3)0.0771 (13)
O20.7403 (5)0.3147 (6)0.3831 (5)0.1058 (19)
C150.6838 (6)0.1017 (7)0.4333 (6)0.0715 (17)
C140.7705 (5)0.2200 (7)0.4397 (5)0.0664 (15)
F20.6434 (12)0.0677 (12)0.3507 (5)0.283 (8)
F30.6053 (8)0.1223 (11)0.4759 (11)0.257 (6)
F10.7170 (8)0.0077 (8)0.4721 (10)0.240 (6)
C160.1208 (9)0.2777 (11)0.6216 (8)0.056 (2)0.50
H16A0.05150.23100.62760.084*0.50
H16B0.15900.30510.68650.084*0.50
H16C0.16920.21770.59200.084*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0450 (4)0.0407 (4)0.0431 (4)0.0050 (3)0.0104 (3)0.0119 (3)
N10.0385 (18)0.0455 (19)0.0358 (17)0.0006 (15)0.0072 (14)0.0136 (15)
C10.047 (2)0.044 (2)0.046 (2)0.0033 (19)0.0123 (19)0.0150 (19)
C130.045 (2)0.057 (3)0.042 (2)0.005 (2)0.0001 (18)0.015 (2)
C70.055 (3)0.060 (3)0.068 (3)0.001 (2)0.027 (3)0.010 (3)
C120.050 (2)0.048 (2)0.037 (2)0.003 (2)0.0074 (18)0.0122 (19)
C110.047 (2)0.053 (3)0.042 (2)0.005 (2)0.0113 (18)0.014 (2)
C80.067 (3)0.070 (3)0.051 (3)0.009 (3)0.019 (2)0.020 (3)
C50.055 (3)0.057 (3)0.069 (3)0.007 (2)0.025 (3)0.027 (3)
C20.073 (3)0.048 (3)0.049 (3)0.020 (2)0.010 (2)0.010 (2)
C60.052 (3)0.072 (4)0.067 (3)0.016 (3)0.006 (2)0.013 (3)
C90.075 (4)0.042 (3)0.113 (6)0.002 (3)0.031 (4)0.024 (3)
C30.072 (4)0.078 (4)0.054 (3)0.030 (3)0.010 (3)0.024 (3)
C40.041 (3)0.086 (4)0.096 (5)0.003 (3)0.006 (3)0.056 (4)
C100.090 (5)0.061 (4)0.079 (4)0.035 (3)0.030 (4)0.021 (3)
O10.063 (2)0.113 (4)0.057 (2)0.015 (2)0.017 (2)0.009 (2)
O20.104 (4)0.068 (3)0.138 (5)0.003 (3)0.001 (4)0.025 (3)
C150.063 (4)0.069 (4)0.082 (4)0.015 (3)0.013 (3)0.001 (3)
C140.063 (3)0.076 (4)0.062 (3)0.004 (3)0.018 (3)0.021 (3)
F20.427 (15)0.321 (12)0.086 (4)0.306 (13)0.004 (7)0.023 (6)
F30.156 (7)0.224 (10)0.436 (18)0.078 (7)0.181 (10)0.056 (11)
F10.200 (8)0.099 (5)0.378 (15)0.057 (5)0.075 (9)0.070 (7)
C160.061 (6)0.050 (5)0.053 (5)0.008 (5)0.002 (4)0.012 (4)
Geometric parameters (Å, º) top
Fe1—C102.025 (6)C12—H12B0.9700
Fe1—C12.034 (4)C11—H11A0.9700
Fe1—C22.035 (5)C11—H11B0.9700
Fe1—C72.036 (5)C8—C91.419 (9)
Fe1—C92.036 (5)C8—H80.9800
Fe1—C62.039 (6)C5—C41.420 (9)
Fe1—C52.040 (5)C5—H50.9800
Fe1—C82.041 (5)C2—C31.422 (8)
Fe1—C32.041 (6)C2—H20.9800
Fe1—C42.044 (6)C6—C101.400 (10)
N1—C121.487 (6)C6—H60.9800
N1—C131.511 (5)C9—C101.433 (10)
N1—C111.529 (5)C9—H90.9800
N1—H1A0.9100C3—C41.397 (10)
C1—C21.426 (7)C3—H30.9800
C1—C51.432 (7)C4—H40.9800
C1—C111.493 (6)C10—H100.9800
C13—C12i1.521 (6)O1—C141.197 (8)
C13—C161.643 (12)O2—C141.220 (8)
C13—H13A0.9700C15—F21.192 (9)
C13—H13B0.9700C15—F31.201 (11)
C7—C81.391 (8)C15—F11.229 (10)
C7—C61.402 (9)C15—C141.546 (9)
C7—H70.9800C16—H16A0.9600
C12—C13i1.521 (6)C16—H16B0.9600
C12—H12A0.9700C16—H16C0.9600
C10—Fe1—C1120.4 (3)C13i—C12—H12A109.2
C10—Fe1—C2155.9 (3)N1—C12—H12B109.2
C1—Fe1—C241.0 (2)C13i—C12—H12B109.2
C10—Fe1—C767.9 (3)H12A—C12—H12B107.9
C1—Fe1—C7126.2 (2)C1—C11—N1110.9 (4)
C2—Fe1—C7108.6 (2)C1—C11—H11A109.5
C10—Fe1—C941.3 (3)N1—C11—H11A109.5
C1—Fe1—C9155.6 (3)C1—C11—H11B109.5
C2—Fe1—C9161.5 (3)N1—C11—H11B109.5
C7—Fe1—C967.9 (3)H11A—C11—H11B108.0
C10—Fe1—C640.3 (3)C7—C8—C9108.1 (5)
C1—Fe1—C6108.4 (2)C7—C8—Fe169.9 (3)
C2—Fe1—C6121.5 (3)C9—C8—Fe169.5 (3)
C7—Fe1—C640.2 (2)C7—C8—H8125.9
C9—Fe1—C668.4 (3)C9—C8—H8125.9
C10—Fe1—C5106.9 (3)Fe1—C8—H8125.9
C1—Fe1—C541.2 (2)C4—C5—C1107.2 (6)
C2—Fe1—C569.1 (2)C4—C5—Fe169.8 (3)
C7—Fe1—C5163.1 (2)C1—C5—Fe169.2 (3)
C9—Fe1—C5119.7 (3)C4—C5—H5126.4
C6—Fe1—C5125.6 (3)C1—C5—H5126.4
C10—Fe1—C868.6 (3)Fe1—C5—H5126.4
C1—Fe1—C8162.4 (2)C3—C2—C1107.2 (6)
C2—Fe1—C8125.0 (2)C3—C2—Fe169.8 (3)
C7—Fe1—C839.9 (2)C1—C2—Fe169.4 (3)
C9—Fe1—C840.8 (3)C3—C2—H2126.4
C6—Fe1—C867.8 (2)C1—C2—H2126.4
C5—Fe1—C8155.1 (2)Fe1—C2—H2126.4
C10—Fe1—C3161.6 (3)C10—C6—C7108.1 (6)
C1—Fe1—C368.5 (2)C10—C6—Fe169.3 (3)
C2—Fe1—C340.8 (2)C7—C6—Fe169.8 (3)
C7—Fe1—C3121.7 (3)C10—C6—H6125.9
C9—Fe1—C3124.2 (3)C7—C6—H6125.9
C6—Fe1—C3156.7 (3)Fe1—C6—H6125.9
C5—Fe1—C368.2 (3)C8—C9—C10106.9 (6)
C8—Fe1—C3107.8 (2)C8—C9—Fe169.8 (3)
C10—Fe1—C4124.9 (3)C10—C9—Fe168.9 (3)
C1—Fe1—C468.5 (2)C8—C9—H9126.5
C2—Fe1—C468.4 (3)C10—C9—H9126.5
C7—Fe1—C4155.5 (3)Fe1—C9—H9126.5
C9—Fe1—C4106.8 (3)C4—C3—C2108.9 (5)
C6—Fe1—C4162.3 (3)C4—C3—Fe170.1 (3)
C5—Fe1—C440.7 (3)C2—C3—Fe169.4 (3)
C8—Fe1—C4120.5 (2)C4—C3—H3125.6
C3—Fe1—C440.0 (3)C2—C3—H3125.6
C12—N1—C13110.0 (3)Fe1—C3—H3125.6
C12—N1—C11111.6 (3)C3—C4—C5108.7 (5)
C13—N1—C11110.2 (3)C3—C4—Fe169.9 (3)
C12—N1—H1A108.3C5—C4—Fe169.5 (3)
C13—N1—H1A108.3C3—C4—H4125.7
C11—N1—H1A108.3C5—C4—H4125.7
C2—C1—C5108.0 (5)Fe1—C4—H4125.7
C2—C1—C11127.0 (5)C6—C10—C9107.8 (6)
C5—C1—C11125.0 (5)C6—C10—Fe170.4 (3)
C2—C1—Fe169.5 (3)C9—C10—Fe169.8 (3)
C5—C1—Fe169.7 (3)C6—C10—H10126.1
C11—C1—Fe1125.7 (3)C9—C10—H10126.1
N1—C13—C12i109.8 (4)Fe1—C10—H10126.1
N1—C13—C16109.2 (5)F2—C15—F3106.4 (11)
C12i—C13—C16105.7 (5)F2—C15—F1102.1 (10)
N1—C13—H13A109.7F3—C15—F199.1 (10)
C12i—C13—H13A109.7F2—C15—C14114.8 (7)
C16—C13—H13A112.6F3—C15—C14114.6 (7)
N1—C13—H13B109.7F1—C15—C14117.8 (7)
C12i—C13—H13B109.7O1—C14—O2129.7 (7)
H13A—C13—H13B108.2O1—C14—C15115.9 (7)
C8—C7—C6109.0 (5)O2—C14—C15114.4 (6)
C8—C7—Fe170.2 (3)C13—C16—H16A109.5
C6—C7—Fe170.0 (3)C13—C16—H16B109.5
C8—C7—H7125.5H16A—C16—H16B109.5
C6—C7—H7125.5C13—C16—H16C109.5
Fe1—C7—H7125.5H16A—C16—H16C109.5
N1—C12—C13i111.9 (4)H16B—C16—H16C109.5
N1—C12—H12A109.2
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.911.802.696 (6)169
C4—H4···O2iii0.982.353.306 (9)163
Symmetry codes: (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(C17H24N2)](C2F3O2)2
Mr724.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.922 (3), 9.7977 (16), 13.628 (4)
β (°) 99.998 (15)
V3)1567.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.771, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
15611, 3592, 3117
Rint0.042
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.224, 1.07
No. of reflections3592
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.71

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.911.802.696 (6)169.4
C4—H4···O2ii0.982.353.306 (9)163.4
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationBase, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun. 5, 46–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, F. (2009). Acta Cryst. E65, m788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHess, A., Brosch, O., Weyhermüller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). In Ferrocenes. Weinheim: VCH.  Google Scholar
First citationYang, J.-X., Tian, Y.-P., Liu, Q.-L., Xie, Y.-S., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2002). Acta Cryst. C58, m43–m44.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds