metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chloridobis[5-(2-pyrid­yl)-1H-tetra­zolato-κN1]iron(III)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 20 June 2009; accepted 24 June 2009; online 1 July 2009)

The title compound, [Fe(C6H4N5)2Cl(H2O)], was synthesized by hydro­thermal reaction of FeCl3 with 2-(1H-tetra­zol-5-yl)pyridine. The iron(III) metal centre exhibits a distorted octa­hedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetra­zole rings are nearly coplanar [dihedral angles = 4.32 (15) and 5.04 (14)°]. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (100).

Related literature

For physical properties such as permittivity, fluorescence, magnetism and optical properties of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495-1496.], 2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). For the structure of a related tetra­zole compound, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H4N5)2Cl(H2O)]

  • Mr = 401.60

  • Monoclinic, P 21 /c

  • a = 17.072 (3) Å

  • b = 7.1905 (14) Å

  • c = 14.292 (3) Å

  • β = 113.85 (3)°

  • V = 1604.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.867, Tmax = 0.894

  • 15693 measured reflections

  • 3678 independent reflections

  • 3226 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.13

  • 3678 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N4i 0.98 1.67 2.652 (2) 178
O1W—H1WB⋯N9ii 0.82 1.80 2.626 (2) 176
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to their potential propertiess, such as permittivity, fluorescence, magnetism and optical properties. (Fu et al., 2007; Huang et al., 1999; Liu et al., 1999; Xie et al., 2003; Zhang et al.,2001; Zhang et al.,2000). Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of their various coordination modes. (Fu et al., 2008). Herein the crystal structure of the title compound is reported.

In the title compound (Fig. 1), the distorted octahedral coordination geometry around the iron(III) metal centre is provided by four N atoms from two bidentate 2-(1H-tetrazol-5-yl)pyridine ligands, one water O atom and one chloride ion. The pyridine and tetrazole rings are nearly coplanar and only twisted by a dihedral angle of 4.32 (15) and 5.04 (14)°. The geometric parameters of the tetrazole rings are comparable to those observed in a related molecule (Fu et al., 2008). The water molecules are involved in intermolecular O—H···N hydrogen bonds (Table 1) generating a two-dimensional network (Fig. 2).

Related literature top

For physical properties such as permittivity, fluorescence, magnetism and optical properties of metal-organic coordination compounds, see: Fu et al. (2007); Huang et al. (1999); Liu et al. (1999); Xie et al. (2003); Zhang et al. (2001); Zhang et al. (2000). For the structure of a related tetrazole compound, see: Fu et al. (2008).

Experimental top

A mixture of 2-(1H-tetrazol-5-yl)pyridine (0.2 mmol), FeCl3 (0.1 mmol), distilled water (1 ml) and a few drops of ethanol sealed in a glass tube was heated at 85 °C. Colourless block crystals suitable for X-ray analysis were obtained after 10 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map refined as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the two dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Aquachloridobis[5-(2-pyridyl)-1H-tetrazolato-κN1]iron(III) top
Crystal data top
[Fe(C6H4N5)2Cl(H2O)]F(000) = 812
Mr = 401.60Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3226 reflections
a = 17.072 (3) Åθ = 3.1–27.5°
b = 7.1905 (14) ŵ = 1.13 mm1
c = 14.292 (3) ÅT = 298 K
β = 113.85 (3)°Block, colourless
V = 1604.6 (7) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3678 independent reflections
Radiation source: fine-focus sealed tube3226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.867, Tmax = 0.894l = 1818
15693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.8976P]
where P = (Fo2 + 2Fc2)/3
3678 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Fe(C6H4N5)2Cl(H2O)]V = 1604.6 (7) Å3
Mr = 401.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.072 (3) ŵ = 1.13 mm1
b = 7.1905 (14) ÅT = 298 K
c = 14.292 (3) Å0.15 × 0.10 × 0.10 mm
β = 113.85 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3678 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3226 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.894Rint = 0.040
15693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
3678 reflectionsΔρmin = 0.37 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.244652 (16)0.52062 (4)0.23914 (2)0.02111 (9)
Cl10.23959 (4)0.25457 (8)0.15658 (4)0.04015 (15)
O1W0.24124 (9)0.4003 (2)0.36157 (10)0.0298 (3)
H1WA0.25590.26850.37330.045*
H1WB0.23460.46170.40650.045*
N60.10878 (10)0.5759 (2)0.17945 (13)0.0252 (4)
N20.26988 (10)0.7731 (2)0.32361 (13)0.0233 (3)
N10.38334 (10)0.5417 (2)0.30588 (13)0.0277 (4)
N40.28121 (13)1.0424 (2)0.39005 (15)0.0369 (5)
C110.07709 (12)0.6877 (3)0.09684 (15)0.0250 (4)
N100.13543 (12)0.8769 (3)0.00850 (13)0.0332 (4)
N30.22568 (11)0.9153 (2)0.33720 (14)0.0310 (4)
N70.22328 (10)0.6973 (2)0.11379 (13)0.0260 (4)
N90.21594 (12)0.8912 (3)0.00236 (14)0.0338 (4)
N80.26901 (11)0.7850 (3)0.07022 (14)0.0324 (4)
N50.36207 (12)0.9877 (3)0.41089 (16)0.0391 (5)
C50.41688 (12)0.6927 (3)0.36392 (16)0.0277 (4)
C60.35228 (13)0.8211 (3)0.36874 (15)0.0266 (4)
C120.14278 (13)0.7567 (3)0.06464 (15)0.0251 (4)
C100.00933 (13)0.7286 (3)0.04887 (17)0.0345 (5)
H10A0.02990.80740.00750.041*
C40.50448 (14)0.7199 (4)0.41376 (19)0.0412 (6)
H4A0.52640.82610.45270.049*
C80.03227 (14)0.5360 (4)0.1706 (2)0.0419 (6)
H8A0.06860.48230.19700.050*
C90.06443 (14)0.6492 (4)0.08684 (19)0.0403 (6)
H9A0.12290.67290.05550.048*
C70.05448 (14)0.5021 (3)0.21553 (18)0.0370 (5)
H7A0.07610.42550.27280.044*
C30.55837 (15)0.5858 (4)0.4041 (2)0.0501 (7)
H3A0.61740.60060.43670.060*
C20.52448 (15)0.4307 (4)0.3465 (2)0.0524 (7)
H2A0.56020.33870.33980.063*
C10.43723 (15)0.4126 (4)0.2986 (2)0.0436 (6)
H1A0.41460.30680.25950.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01986 (15)0.01999 (15)0.02244 (15)0.00008 (11)0.00748 (11)0.00171 (11)
Cl10.0484 (3)0.0314 (3)0.0355 (3)0.0008 (2)0.0116 (3)0.0137 (2)
O1W0.0454 (9)0.0204 (7)0.0275 (7)0.0062 (6)0.0188 (7)0.0003 (6)
N60.0206 (8)0.0261 (9)0.0284 (9)0.0020 (7)0.0095 (7)0.0006 (7)
N20.0231 (8)0.0186 (8)0.0289 (9)0.0013 (6)0.0114 (7)0.0012 (7)
N10.0222 (8)0.0314 (9)0.0288 (9)0.0024 (7)0.0095 (7)0.0064 (7)
N40.0465 (11)0.0195 (9)0.0431 (11)0.0034 (8)0.0165 (9)0.0044 (8)
C110.0244 (10)0.0242 (10)0.0260 (10)0.0006 (8)0.0098 (8)0.0027 (8)
N100.0421 (11)0.0280 (10)0.0302 (9)0.0018 (8)0.0155 (8)0.0042 (8)
N30.0358 (10)0.0210 (9)0.0396 (10)0.0064 (7)0.0186 (8)0.0011 (8)
N70.0255 (8)0.0282 (9)0.0279 (9)0.0033 (7)0.0145 (7)0.0021 (7)
N90.0472 (11)0.0292 (10)0.0319 (10)0.0045 (8)0.0229 (9)0.0008 (8)
N80.0349 (10)0.0340 (10)0.0348 (10)0.0060 (8)0.0210 (8)0.0001 (8)
N50.0390 (11)0.0251 (10)0.0456 (12)0.0034 (8)0.0094 (9)0.0092 (8)
C50.0237 (10)0.0301 (11)0.0272 (10)0.0002 (8)0.0080 (8)0.0018 (9)
C60.0264 (10)0.0234 (10)0.0266 (10)0.0021 (8)0.0071 (8)0.0030 (8)
C120.0292 (10)0.0224 (10)0.0238 (10)0.0002 (8)0.0108 (8)0.0005 (8)
C100.0280 (11)0.0368 (12)0.0335 (12)0.0073 (9)0.0071 (9)0.0005 (10)
C40.0252 (11)0.0490 (15)0.0417 (13)0.0075 (10)0.0056 (10)0.0078 (11)
C80.0263 (11)0.0538 (16)0.0512 (15)0.0093 (10)0.0214 (11)0.0024 (12)
C90.0198 (10)0.0519 (16)0.0456 (14)0.0028 (10)0.0094 (10)0.0113 (12)
C70.0292 (11)0.0443 (14)0.0401 (13)0.0043 (10)0.0167 (10)0.0092 (11)
C30.0188 (11)0.078 (2)0.0485 (15)0.0031 (12)0.0083 (10)0.0018 (14)
C20.0288 (12)0.0694 (19)0.0582 (17)0.0176 (12)0.0168 (12)0.0098 (15)
C10.0325 (12)0.0460 (15)0.0503 (15)0.0093 (11)0.0146 (11)0.0157 (12)
Geometric parameters (Å, º) top
Fe1—O1W1.9737 (14)N7—C121.336 (3)
Fe1—N72.1041 (17)N7—N81.337 (2)
Fe1—N22.1256 (16)N9—N81.312 (3)
Fe1—N62.1602 (17)N5—C61.321 (3)
Fe1—N12.1708 (18)C5—C41.386 (3)
Fe1—Cl12.2308 (7)C5—C61.461 (3)
O1W—H1WA0.9774C10—C91.385 (3)
O1W—H1WB0.8241C10—H10A0.9300
N6—C71.339 (3)C4—C31.377 (4)
N6—C111.347 (3)C4—H4A0.9300
N2—N31.331 (2)C8—C91.366 (4)
N2—C61.334 (2)C8—C71.377 (3)
N1—C11.340 (3)C8—H8A0.9300
N1—C51.345 (3)C9—H9A0.9300
N4—N31.313 (3)C7—H7A0.9300
N4—N51.348 (3)C3—C21.368 (4)
C11—C101.384 (3)C3—H3A0.9300
C11—C121.461 (3)C2—C11.371 (3)
N10—C121.322 (3)C2—H2A0.9300
N10—N91.345 (3)C1—H1A0.9300
O1W—Fe1—N7164.20 (6)N8—N9—N10111.58 (17)
O1W—Fe1—N286.71 (6)N9—N8—N7107.23 (16)
N7—Fe1—N283.89 (7)C6—N5—N4103.55 (17)
O1W—Fe1—N691.08 (7)N1—C5—C4122.2 (2)
N7—Fe1—N676.34 (7)N1—C5—C6113.45 (17)
N2—Fe1—N690.32 (6)C4—C5—C6124.4 (2)
O1W—Fe1—N193.38 (7)N5—C6—N2111.68 (19)
N7—Fe1—N196.59 (7)N5—C6—C5129.50 (19)
N2—Fe1—N175.90 (6)N2—C6—C5118.81 (18)
N6—Fe1—N1165.22 (7)N10—C12—N7111.92 (18)
O1W—Fe1—Cl194.84 (5)N10—C12—C11129.17 (19)
N7—Fe1—Cl196.38 (5)N7—C12—C11118.91 (18)
N2—Fe1—Cl1171.26 (5)C11—C10—C9118.4 (2)
N6—Fe1—Cl198.24 (5)C11—C10—H10A120.8
N1—Fe1—Cl195.41 (5)C9—C10—H10A120.8
Fe1—O1W—H1WA118.7C3—C4—C5118.4 (2)
Fe1—O1W—H1WB121.3C3—C4—H4A120.8
H1WA—O1W—H1WB119.5C5—C4—H4A120.8
C7—N6—C11118.60 (17)C9—C8—C7119.3 (2)
C7—N6—Fe1125.09 (15)C9—C8—H8A120.3
C11—N6—Fe1116.26 (13)C7—C8—H8A120.3
N3—N2—C6106.24 (16)C8—C9—C10119.5 (2)
N3—N2—Fe1137.95 (13)C8—C9—H9A120.2
C6—N2—Fe1115.30 (13)C10—C9—H9A120.2
C1—N1—C5118.19 (19)N6—C7—C8122.1 (2)
C1—N1—Fe1125.34 (15)N6—C7—H7A118.9
C5—N1—Fe1116.35 (13)C8—C7—H7A118.9
N3—N4—N5111.16 (17)C2—C3—C4119.6 (2)
N6—C11—C10122.05 (19)C2—C3—H3A120.2
N6—C11—C12113.04 (17)C4—C3—H3A120.2
C10—C11—C12124.90 (19)C3—C2—C1119.2 (2)
C12—N10—N9103.34 (17)C3—C2—H2A120.4
N4—N3—N2107.37 (16)C1—C2—H2A120.4
C12—N7—N8105.94 (17)N1—C1—C2122.5 (2)
C12—N7—Fe1115.35 (13)N1—C1—H1A118.8
N8—N7—Fe1138.44 (14)C2—C1—H1A118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4i0.981.672.652 (2)178
O1W—H1WB···N9ii0.821.802.626 (2)176
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C6H4N5)2Cl(H2O)]
Mr401.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.072 (3), 7.1905 (14), 14.292 (3)
β (°) 113.85 (3)
V3)1604.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.867, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
15693, 3678, 3226
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.13
No. of reflections3678
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4i0.981.672.652 (2)178.3
O1W—H1WB···N9ii0.821.802.626 (2)175.7
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495–1496.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds