organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Nitro­benz­yl­oxy)quinoline

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyhnju@hotmail.com

(Received 23 June 2009; accepted 3 July 2009; online 8 July 2009)

In the mol­ecule of the title compound, C16H12N2O3, the nitrobenzene benzene ring forms a dihedral angle of 23.8 (8)° with the plane of the quinoline ring system. The crystal structure is stabilized by an aromatic ππ stacking inter­action between centrosymmetrically related benzene rings [centroid–centroid distance 3.663 (2) Å].

Related literature

For related structures, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Li & Chen (2008[Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291.]); Zhao (2008[Zhao, Y.-Y. (2008). Acta Cryst. E64, o761.]); Zhao et al. (2009[Zhao, M. M., Li, Y. H., Wu, D. H. & Wan, Q. (2009). Acta Cryst. E65, o1261.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O3

  • Mr = 280.28

  • Monoclinic, P 21 /n

  • a = 12.296 (3) Å

  • b = 8.9146 (18) Å

  • c = 13.559 (3) Å

  • β = 115.25 (3)°

  • V = 1344.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.981

  • 11965 measured reflections

  • 2630 independent reflections

  • 1372 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.152

  • S = 1.02

  • 2630 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Recently, we have reported the synthesis and crystal structure of some benzonitrile compounds (Fu & Zhao, 2007; Li & Chen, 2008; Zhao, 2008; Zhao et al., 2009). As an extension of our work on the structural characterization of benzonitrile derivatives, we present herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), bond lengths and angles are within normal ranges. The C11–C16 benzene ring forms a dihedral angle of 23.8 (8)° with the plane of the quinoline ring system. No intra- or intermolecular hydrogen bonds are observed. The crystal structure is stabilized by an aromatic π-π stacking interaction involving centrosymmetrically related benzene rings at (x, y, z) and (1-x, -y, 1-z), with a centroid-centroid distance of 3.663 (2) Å.

Related literature top

For related structures, see: Fu & Zhao (2007); Li & Chen (2008); Zhao (2008); Zhao et al. (2009).

Experimental top

Quinolin-6-ol (1 g,0.0069 mol) was added to a solution of sodium hydroxide (0.276 g, 0.0069 mol) in methanol (15 ml) and stirred for one hour. Then 4-(bromomethyl)benzonitrile (1.49 g, 0.0069 mol) was added and the mixture stirred at room temperature for 1 day. The title compound was isolated by column chromatography using petroleum ether/ethyl acetate (1:1 v/v) as eluent. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/tetrahydrofuran (3:1 v/v) solution.

Refinement top

All H atoms were calculated geometrically allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
6-(4-Nitrobenzyloxy)quinoline top
Crystal data top
C16H12N2O3F(000) = 584
Mr = 280.28Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8689 reflections
a = 12.296 (3) Åθ = 3.0–27.8°
b = 8.9146 (18) ŵ = 0.10 mm1
c = 13.559 (3) ÅT = 293 K
β = 115.25 (3)°Block, colourless
V = 1344.3 (6) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2630 independent reflections
Radiation source: fine-focus sealed tube1372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.3°
CCD profile fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.976, Tmax = 0.981l = 1616
11965 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
2630 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H12N2O3V = 1344.3 (6) Å3
Mr = 280.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.296 (3) ŵ = 0.10 mm1
b = 8.9146 (18) ÅT = 293 K
c = 13.559 (3) Å0.20 × 0.18 × 0.15 mm
β = 115.25 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2630 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1372 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.079
11965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2630 reflectionsΔρmin = 0.15 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3786 (4)0.3414 (4)0.1994 (3)0.0901 (11)
H1A0.34970.38390.26860.108*
C20.4967 (4)0.3728 (4)0.1275 (3)0.0881 (11)
H2A0.54440.43360.14870.106*
C30.5411 (3)0.3132 (4)0.0257 (3)0.0735 (9)
H3A0.62020.33210.02350.088*
C40.4671 (3)0.2230 (3)0.0046 (2)0.0542 (7)
C50.5069 (2)0.1580 (3)0.1090 (2)0.0557 (7)
H5A0.58470.17500.16160.067*
C60.4303 (3)0.0705 (3)0.1319 (2)0.0555 (8)
C70.3126 (3)0.0454 (3)0.0539 (2)0.0657 (8)
H7A0.26130.01470.07110.079*
C80.2730 (3)0.1074 (3)0.0460 (2)0.0650 (8)
H8A0.19430.09020.09670.078*
C90.3483 (3)0.1972 (3)0.0747 (2)0.0572 (8)
C100.5763 (2)0.0164 (3)0.3124 (2)0.0597 (8)
H10A0.59430.12120.33180.072*
H10B0.63320.02110.28610.072*
C110.5866 (2)0.0718 (3)0.4102 (2)0.0502 (7)
C120.6722 (3)0.0323 (3)0.5119 (2)0.0620 (8)
H12A0.72110.05040.51890.074*
C130.6870 (3)0.1124 (3)0.6032 (2)0.0605 (8)
H13A0.74560.08550.67150.073*
C140.6139 (2)0.2321 (3)0.5916 (2)0.0504 (7)
C150.5270 (3)0.2749 (3)0.4919 (2)0.0607 (8)
H15A0.47770.35680.48590.073*
C160.5142 (3)0.1945 (3)0.4008 (2)0.0627 (8)
H16A0.45650.22310.33250.075*
N10.3048 (2)0.2567 (3)0.1773 (2)0.0782 (8)
N20.6285 (3)0.3179 (3)0.6883 (2)0.0655 (7)
O10.45682 (16)0.0016 (2)0.22964 (15)0.0699 (6)
O20.7111 (2)0.2867 (3)0.77502 (18)0.0885 (8)
O30.5578 (2)0.4184 (3)0.67829 (19)0.1026 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.105 (3)0.111 (3)0.062 (2)0.029 (3)0.043 (2)0.032 (2)
C20.096 (3)0.101 (3)0.080 (3)0.005 (2)0.050 (2)0.028 (2)
C30.074 (2)0.083 (2)0.070 (2)0.0011 (18)0.0365 (18)0.0121 (19)
C40.0594 (18)0.0558 (17)0.0529 (17)0.0062 (14)0.0293 (15)0.0049 (15)
C50.0499 (17)0.0636 (19)0.0504 (17)0.0014 (14)0.0182 (14)0.0028 (15)
C60.0569 (18)0.0606 (19)0.0488 (17)0.0038 (15)0.0224 (15)0.0096 (15)
C70.0593 (19)0.075 (2)0.061 (2)0.0085 (16)0.0246 (17)0.0075 (17)
C80.0535 (18)0.078 (2)0.0564 (19)0.0016 (16)0.0167 (16)0.0063 (17)
C90.0624 (19)0.064 (2)0.0458 (17)0.0152 (16)0.0241 (15)0.0030 (15)
C100.0556 (18)0.0685 (19)0.0551 (17)0.0006 (15)0.0235 (15)0.0073 (16)
C110.0513 (16)0.0530 (17)0.0498 (17)0.0060 (14)0.0249 (14)0.0037 (14)
C120.065 (2)0.0585 (19)0.0581 (19)0.0059 (15)0.0220 (16)0.0016 (16)
C130.0649 (19)0.063 (2)0.0443 (17)0.0002 (16)0.0144 (15)0.0018 (15)
C140.0552 (17)0.0486 (17)0.0475 (17)0.0149 (14)0.0219 (14)0.0077 (14)
C150.0610 (18)0.0558 (18)0.0592 (19)0.0042 (14)0.0196 (16)0.0100 (16)
C160.0626 (19)0.064 (2)0.0515 (17)0.0022 (16)0.0150 (15)0.0042 (16)
N10.081 (2)0.097 (2)0.0538 (16)0.0222 (16)0.0264 (15)0.0179 (15)
N20.0721 (18)0.0630 (18)0.0608 (18)0.0157 (15)0.0278 (15)0.0106 (15)
O10.0584 (13)0.0896 (15)0.0573 (13)0.0055 (11)0.0204 (11)0.0238 (11)
O20.0970 (18)0.0955 (18)0.0544 (13)0.0180 (14)0.0145 (13)0.0151 (13)
O30.114 (2)0.106 (2)0.0789 (17)0.0218 (17)0.0334 (15)0.0297 (15)
Geometric parameters (Å, º) top
C1—N11.310 (4)C10—O11.425 (3)
C1—C21.389 (4)C10—C111.500 (3)
C1—H1A0.9300C10—H10A0.9700
C2—C31.358 (4)C10—H10B0.9700
C2—H2A0.9300C11—C121.377 (4)
C3—C41.402 (4)C11—C161.382 (4)
C3—H3A0.9300C12—C131.373 (4)
C4—C51.410 (4)C12—H12A0.9300
C4—C91.415 (4)C13—C141.360 (4)
C5—C61.357 (4)C13—H13A0.9300
C5—H5A0.9300C14—C151.372 (4)
C6—O11.368 (3)C14—N21.461 (3)
C6—C71.399 (4)C15—C161.378 (4)
C7—C81.346 (4)C15—H15A0.9300
C7—H7A0.9300C16—H16A0.9300
C8—C91.399 (4)N2—O21.214 (3)
C8—H8A0.9300N2—O31.215 (3)
C9—N11.367 (3)
N1—C1—C2125.1 (3)O1—C10—H10A110.0
N1—C1—H1A117.5C11—C10—H10A110.0
C2—C1—H1A117.5O1—C10—H10B110.0
C3—C2—C1118.8 (3)C11—C10—H10B110.0
C3—C2—H2A120.6H10A—C10—H10B108.4
C1—C2—H2A120.6C12—C11—C16118.8 (3)
C2—C3—C4119.5 (3)C12—C11—C10119.4 (3)
C2—C3—H3A120.2C16—C11—C10121.7 (3)
C4—C3—H3A120.2C13—C12—C11121.4 (3)
C3—C4—C5122.6 (3)C13—C12—H12A119.3
C3—C4—C9117.4 (3)C11—C12—H12A119.3
C5—C4—C9120.0 (3)C14—C13—C12118.5 (3)
C6—C5—C4119.2 (3)C14—C13—H13A120.8
C6—C5—H5A120.4C12—C13—H13A120.8
C4—C5—H5A120.4C13—C14—C15122.1 (3)
C5—C6—O1125.3 (3)C13—C14—N2119.0 (3)
C5—C6—C7120.9 (3)C15—C14—N2119.0 (3)
O1—C6—C7113.8 (3)C14—C15—C16118.8 (3)
C8—C7—C6120.6 (3)C14—C15—H15A120.6
C8—C7—H7A119.7C16—C15—H15A120.6
C6—C7—H7A119.7C15—C16—C11120.4 (3)
C7—C8—C9121.1 (3)C15—C16—H16A119.8
C7—C8—H8A119.5C11—C16—H16A119.8
C9—C8—H8A119.5C1—N1—C9116.6 (3)
N1—C9—C8119.2 (3)O2—N2—O3122.7 (3)
N1—C9—C4122.6 (3)O2—N2—C14118.8 (3)
C8—C9—C4118.2 (3)O3—N2—C14118.5 (3)
O1—C10—C11108.5 (2)C6—O1—C10117.5 (2)

Experimental details

Crystal data
Chemical formulaC16H12N2O3
Mr280.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.296 (3), 8.9146 (18), 13.559 (3)
β (°) 115.25 (3)
V3)1344.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11965, 2630, 1372
Rint0.079
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.152, 1.02
No. of reflections2630
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant (4007041028) and a Science and Technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

References

First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M. & Chen, X. (2008). Acta Cryst. E64, o2291.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y.-Y. (2008). Acta Cryst. E64, o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M., Li, Y. H., Wu, D. H. & Wan, Q. (2009). Acta Cryst. E65, o1261.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds